Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 279: 116503, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810288

ABSTRACT

Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.

2.
Food Chem Toxicol ; 189: 114759, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796086

ABSTRACT

T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.

3.
Article in English | MEDLINE | ID: mdl-38815737

ABSTRACT

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic, degenerative, and cartilage-damaging disease for which low selenium and T-2 toxin are considered environmental pathogenic factors. This study aimed to investigate the molecular mechanisms of autophagy in cartilage damage caused by T-2 toxin and the protective effect of chondroitin sulfate A nano-elemental selenium (CSA-SeNP) on the cartilage. METHODS: KBD chondrocytes and C28/I2 human chondrocyte cell lines were used. T-2 toxin, AKT inhibitor, and CSA-SeNP treatment experiments were conducted separately, with a treatment time of 24 hours. Autophagy was monitored using MDC staining, and mRFP-GFP-LC3 adenovirus, respectively. RT-qPCR and western blotting were used to detect the expression of the relevant genes and proteins. RESULTS: The suppression of autophagy observed in KBD chondrocytes was replicated by applying 10 ng/mL T-2 toxin to C28/I2 chondrocytes for 24 hours. The AKT/TSCR/Rheb/mTOR signaling pathway was activated by T-2 toxin, which inhibits autophagy. The supplementation with CSA-SeNP alleviated the inhibition of autophagy by T-2 toxin through the AKT/TSCR/Rheb/mTOR signaling pathway. CONCLUSIONS: Loss of autophagy regulated by the AKT/TSCR/Rheb/mTOR signaling pathway plays an important role in cartilage damage caused by T-2 toxin. CSA-SeNP supplementation attenuated inhibition of autophagy in chondrocyte by T-2 toxin by modulating this signaling pathway. These findings provide promising new targets for the prevention and treatment of cartilage disease.

4.
Int J Environ Health Res ; : 1-13, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323408

ABSTRACT

Secular trends of mortality and disability-adjusted life years (DALY) in type 2 diabetes mellitus (T2DM) attributable to PM2.5 exposure in China remain unclear. This study applied the joinpoint regression analysis and age-period-cohort model to assess the secular trends. There was a slight alternation in age-standardized rate of mortality and DALY in the total population, while the changes were increased in males and decreased in females from 1990 to 2019. Meanwhile, the changes attributable to ambient particular matter pollution exposure (APE) increased significantly and reduced household air pollution from solid fuels exposure (HPE). Longitudinal age curves showed that T2DM mortality and DALY increased with age. Period rate ratios (RR) attributable to APE increased but fell to HPE. Similar trends were observed in the cohort RR. PM2.5 exposure is more harmful to males and older people. The type of air pollution responsible for T2DM has changed from HPE to APE.

5.
J Trace Elem Med Biol ; 83: 127406, 2024 May.
Article in English | MEDLINE | ID: mdl-38308912

ABSTRACT

BACKGROUND: The potential impact of environmental cadmium exposure on the prognosis of patients with rheumatoid arthritis (RA) remains unclear, despite its known association with various adverse health outcomes. METHODS: In this study, a total of 1285 RA patients were included in the National Health and Nutrition Examination Survey (NHANES) conducted between 2003 and 2016. The Cox regression model was employed to investigate the relationship between blood cadmium levels and the risk of all-cause mortality in RA patients. RESULTS: During a mean follow-up duration of 105.9 months, 341 patient deaths were recorded. After adjusting for multiple factors, elevated blood cadmium was strongly correlated with an increased risk of all-cause mortality in patients with RA. With one unit rise in natural logarithm-transformed blood cadmium concentrations, the risk of patient death increased by 107%. The adjusted hazard ratios for each quartile of blood cadmium demonstrated a significant upward trend (P < 0.001). A linear dose-response relationship of blood cadmium concentrations with all-cause mortality was also distinctive (P < 0.001). Consistent findings were ascertained when conducting stratified analyses by age, gender, race, education level, body mass index, smoking status, and drinking status. CONCLUSIONS: Elevated blood cadmium levels may serve as a risk factor for increased death risk in RA patients.


Subject(s)
Arthritis, Rheumatoid , Cadmium , Adult , Humans , Nutrition Surveys , Cohort Studies , Environmental Exposure/adverse effects
6.
Front Public Health ; 12: 1296939, 2024.
Article in English | MEDLINE | ID: mdl-38292908

ABSTRACT

Aims: The current study aims to investigate the consistency between the surveyees' self-reported disease diagnosis and clinical assessment of eight major chronic conditions using community-based survey data collected in Xi'an, China in 2017. With a focus on under-reporting patients, we aim to explore its magnitude and associated factors, to provide an important basis for disease surveillance, health assessment and resource allocation, and public health decision-making and services. Methods: Questionnaires were administered to collect self-reported chronic condition prevalence among the study participants, while physical examinations and laboratory tests were conducted for clinical assessment. For each of the eight chronic conditions, the sensitivity, specificity, under-reporting, over-reporting, and agreement were calculated. Log-binomial regression analysis was employed to identify potential factors that may influence the consistency of chronic condition reporting. Results: A total of 2,272 participants were included in the analysis. Four out of the eight chronic conditions displayed under-reporting exceeding 50%. The highest under-reporting was observed for goiter [85.93, 95% confidence interval (CI): 85.25-86.62%], hyperuricemia (83.94, 95% CI: 83.22-84.66%), and thyroid nodules (72.89, 95% CI: 72.02-73.76%). Log-binomial regression analysis indicated that senior age and high BMI were potential factors associated with the under-reporting of chronic condition status in the study population. Conclusion: The self-reported disease diagnosis by respondents and clinical assessment data exhibit significant inconsistency for all eight chronic conditions. Large proportions of patients with multiple chronic conditions were under-reported in Xi'an, China. Combining relevant potential factors, targeted health screenings for high-risk populations might be an effective method for identifying under-reporting patients.


Subject(s)
Self Report , Humans , Risk Factors , Surveys and Questionnaires , Chronic Disease , China/epidemiology
7.
Ecotoxicol Environ Saf ; 269: 115748, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38029582

ABSTRACT

As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.


Subject(s)
Kidney Diseases , Selenium , T-2 Toxin , Animals , Rats , Estrogen Receptor alpha/metabolism , Fibrosis , Kidney Diseases/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Selenium/pharmacology , Selenium/toxicity , Signal Transduction , T-2 Toxin/toxicity
8.
Carbohydr Polym ; 316: 121047, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321739

ABSTRACT

Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A­selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.


Subject(s)
Cartilage, Articular , Selenium , Rats , Animals , Chondroitin Sulfates/metabolism , Selenium/metabolism , Cartilage/metabolism , Aggrecans/metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism
9.
Chem Biol Interact ; 378: 110483, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37044285

ABSTRACT

Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.


Subject(s)
Nanoparticles , Neoplasms , Selenium , Humans , Selenium/therapeutic use , Selenium/pharmacology , Nanoparticles/therapeutic use , Antioxidants/pharmacology
10.
Healthcare (Basel) ; 11(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36833096

ABSTRACT

Increasing attention has recently been paid to the harm of polycystic ovary syndrome (PCOS) to women. However, due to the inconsistency of global clinical diagnostic standards and the differing allocation of medical resources among different regions, there is a lack of comprehensive estimation of the global incidence and disability-adjusted life years (DALYs) of PCOS. Thus, it is difficult to assess the disease burden. We extracted PCOS disease data from 1990 to 2019 from the Global Burden of Disease Study (GBD) 2019 and estimated the incidence, DALYs, and the corresponding age-standardized rates (ASRs) of PCOS, as well as the socio-demographic index (SDI) quintiles, to describe epidemiological trends at the global level, encompassing 21 regions and 204 countries and territories. Globally, the incidence and DALYs of PCOS have increased. Its ASR also shows an increasing trend. Among them, the high SDI quintile seems relatively stable, whereas other SDI quintiles are constantly rising over time. Our research has provided clues regarding the disease pattern and epidemic trend of PCOS and analyzed the possible causes of disease burden in some specific countries and territories, which may have some value in health resource allocation and health policy formulation and prevention strategies.

11.
Biol Trace Elem Res ; 201(10): 4850-4860, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36645617

ABSTRACT

The single and combined effects of short-term selenium (Se) deficiency and T-2 toxin-induced kidney pathological injury through the MMPs/TIMPs system were investigated. Forty-eight rats were randomly divided into control, 10 ng/g T-2 toxin, 100 ng/g T-2 toxin, Se-deficient, 10 ng/g T-2 toxin and Se deficiency combined, and 100 ng/g T-2 toxin and Se deficiency combined groups for a 4-week intervention. The kidney Se concentration was measured to evaluate the construction of animal models of Se deficiency. Kidney tissues were analyzed by hematoxylin-eosin staining, Masson staining, and transmission electron microscope to observe the pathological changes, the severity of kidney fibrosis, and ultrastructural changes, respectively. Meanwhile, quantitative polymerase chain reaction and immunohistochemical staining were used to analyze the gene and protein expression levels of matrix metallopeptidase 2/3 (MMP2/3) and tissue inhibitor of metalloproteinase 1 (TIMP1). The results showed that short-term Se deficiency and T-2 toxin exposure can cause kidney injury through tubular degeneration and even lead to kidney fibrosis. And the combination of T-2 toxin and Se deficiency had a synergistic effect on the kidney. A dose-response effect of the T-2 toxin was also observed. At the gene and protein levels, the expression of MMP2/3 in the intervention group increased, while the expression of TIMP1 decreased compared with the control group. In conclusion, short-term Se deficiency and T-2 toxin exposure might lead to injury and even the development of fibrosis in the kidneys, and combined intervention can increase the severity with a dose-dependent trend. MMP2/3 and TIMP1 likely play a significant role in the development of kidney fibrosis.


Subject(s)
Kidney Diseases , Selenium , T-2 Toxin , Rats , Animals , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , T-2 Toxin/toxicity , Selenium/metabolism , Matrix Metalloproteinase 2/genetics , Kidney/metabolism , Kidney Diseases/metabolism , Fibrosis
12.
Biol Trace Elem Res ; 201(8): 3825-3833, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36282470

ABSTRACT

The effects of short-term dietary selenium deficiency on the liver and protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway were evaluated. Fourteen growing rats were randomly divided into control and selenium deficiency groups and fed standard and selenium-deficient diets for 4 weeks, respectively. The serum and liver selenium concentrations were measured to evaluate the construction of animal models with selenium deficiency. Liver tissues were analyzed by transmission electron microscope, hematoxylin-eosin staining, and Masson staining to observe the ultrastructural changes, pathological changes, and severity of liver fibrosis, respectively. Besides, immunohistochemical staining (IHC) was used to analyze the effects of selenium deficiency on the expression of key proteins in the Akt/mTOR signaling pathway. The results showed that selenium concentrations in the serum and liver tissue were significantly lower in the selenium deficiency group than in the control group, and the selenium deficiency intervention could affect the morphology and structure of hepatocytes and mitochondria. Meanwhile, the liver tissue showed structural damage and fibrotic changes in the selenium deficiency group. The IHC results showed the positive staining rates of Akt, phosphorylation-modified protein kinase B (p-Akt), mTOR, and phosphorylation-modified mammalian target of the rapamycin (p-mTOR) in the liver of the selenium deficiency group which were significantly lower than that of the control group. In conclusion, short-term selenium deficiency dietary intervention could lead to liver fibrosis by inhibiting the Akt/mTOR signaling pathway.


Subject(s)
Proto-Oncogene Proteins c-akt , Selenium , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Selenium/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Liver Cirrhosis , Mammals/metabolism
13.
Cells ; 11(16)2022 08 12.
Article in English | MEDLINE | ID: mdl-36010590

ABSTRACT

Glycoproteins are involved in the development of many diseases, while the type and content of N-glycoproteins in the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) are still unclear. This research aims to identify N-glycoproteins in knee cartilage patients with OA and KBD compared with normal control (N) adults. The cartilage samples were collected from gender- and age-matched OA (n = 9), KBD (n = 9) patients, and N (n = 9) adults. Glycoproteomics and label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) obtained N-glycoproteins of KBD and OA. A total of 594 N-glycoproteins and 1146 N-glycosylation peptides were identified. The identified data were further compared and analyzed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interactions (PPI). Pairwise comparison of the glycoproteins detected in the three groups showed that integrin beta-1 (ITGB1), collagen alpha-1 (II) chain (COL2A1), collagen alpha-1 (VII) chain (COL7A1), carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 4 (CHST-4), thrombospondin 2 (THBS2), bone morphogenetic protein 8A (BMP8A), tenascin-C (TNC), lysosome-associated membrane protein (LAMP2), and beta-glucuronidase (GUSB) were significantly differentially expressed. GO results suggested N-glycoproteins mainly belonged to protein metabolic process, single-multicellular and multicellular organism process, cell adhesion, biological adhesion, and multicellular organism development. KEGG and PPI results revealed that key N-glycoproteins were closely related to pathways for OA and KBD, such as phagosome, ECM-receptor interaction, lysosome, focal adhesion, protein digestion, and absorption. These results reflected glycoprotein expression for OA and KBD in the process of ECM degradation, material transport, cell-cell or cell-ECM interaction, and information transduction. These key significantly differentially expressed N-glycoproteins and pathways lead to the degeneration and degradation of the cartilage of OA and KBD mainly by disrupting the synthesis and catabolism of basic components of ECM and chondrocytes and interfering with the transfer of material or information. The key N-glycoproteins or pathways in this research are potential targets for pathological mechanisms and therapies of OA and KBD.


Subject(s)
Cartilage, Articular , Kashin-Beck Disease , Osteoarthritis , Adult , Cartilage, Articular/metabolism , Chromatography, Liquid , Collagen Type VII/metabolism , Glycoproteins/metabolism , Humans , Kashin-Beck Disease/genetics , Kashin-Beck Disease/metabolism , Kashin-Beck Disease/pathology , Knee , Osteoarthritis/metabolism , Tandem Mass Spectrometry
14.
Nutrients ; 14(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745140

ABSTRACT

BACKGROUND: As a central organ of energy metabolism, the liver is closely related to selenium for its normal function and disease development. However, the underlying roles of mitochondrial energy metabolism and mitophagy in liver fibrosis associated with selenium remain unclear. METHODS: 28 rats were randomly divided into normal, low-selenium, nano-selenium supplement-1, and supplement-2 groups for a 12-week intervention. We observed pathological and ultrastructural changes in the liver and analyzed the effects of selenium deficiency and nano-selenium supplementation on liver metabolic activities and crucial proteins expression of mammalian target of the rapamycin (mTOR) signaling pathway. RESULTS: Selenium deficiency caused liver pathological damage and fibrosis with the occurrence of mitophagy by disrupting normal metabolic activities; meanwhile, the mTOR signaling pathway was up-regulated to enhance mitophagy to clear damaged mitochondria. Furthermore, nano-selenium supplements could reduce the severity of pathological damage and fibrosis in livers and maintain normal energy metabolic activity. With the increased concentrations of nano-selenium supplement, swelling mitochondria and mitophagy gradually decreased, accompanied by the higher expression of mTOR and phosphorylation-modified mTOR proteins and lower expression of unc-51 like autophagy activating kinase 1 (ULK1) and phosphorylation-modified ULK1 proteins. CONCLUSIONS: Mitophagy regulated by the mTOR signaling pathway plays a dual protective role on low-selenium inducing liver fibrosis and nano-selenium supplements preventing liver fibrosis. Mitochondrial energy metabolism plays an important role in these processes as well.


Subject(s)
Mitophagy , Selenium , Animals , Autophagy , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Mammals , Rats , Selenium/pharmacology , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases
15.
Int J Biol Macromol ; 210: 128-138, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35526762

ABSTRACT

The aim of this study was to identify crucial proteins and N-glycosylated sites in the pathological mechanism of Kashin-Beck disease (KBD) compared with osteoarthritis (OA). Nine KBD knee subjects and nine OA knee subjects were selected for the study. Quantitative proteomics and N-glycoproteomics data of KBD and OA were obtained by protein and N-glycoprotein enrichment and LC-MS/MS analysis. Differentially expressed proteins or N-glycosylation sites were examined with a comparative analysis between KBD and OA. Total 2205 proteins were identified in proteomic analysis, of which 375 were significantly different. Among these, 121 proteins were up-regulated and 254 were down-regulated. In N-glycoproteomic analysis, 278 different N-glycosylated sites that were related to 187 N-glycoproteins were identified. Proteins and their N-glycosylated sites are associated with KBD pathological process including ITGB1, LRP1, ANO6, COL1A1, MXRA5, DPP4, and CSPG4. CRLF1 and GLG1 are proposed to associate with both KBD and OA pathological processes. Key pathways in KBD vs. OA proteomic and N-glycoproteomic analysis contained extracellular matrix receptor interaction, focal adhesion, phagosome, protein digestion, and absorption. N-glycosylation may influence the pathological process by affecting the integrity of chondrocytes or cartilage. It regulated the intercellular signal transduction pathway, which contributes to cartilage destruction in KBD.


Subject(s)
Cartilage, Articular , Kashin-Beck Disease , Osteoarthritis , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Chromatography, Liquid , Glycosylation , Humans , Kashin-Beck Disease/metabolism , Kashin-Beck Disease/pathology , Osteoarthritis/pathology , Proteomics , Tandem Mass Spectrometry
16.
Cartilage ; 13(1): 19476035221087706, 2022.
Article in English | MEDLINE | ID: mdl-35313742

ABSTRACT

OBJECTIVE: To investigate the expression of Hedgehog (HH) signaling pathway proteins in knee articular cartilage from Kashin-Beck disease (KBD) and osteoarthritis (OA) patients. METHODS: Knee articular cartilage samples were collected from normal (N), OA, and KBD adults (aged 38-60 years) and divided into 3 groups with 6 subjects in each group. The localization of the HH pathway proteins bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 4 (BMP4), Sonic hedgehog (SHH), and Indian hedgehog (IHH) was observed with the microscope after immunohistochemical (IHC) staining. Positive staining cell rates of each proteins were compared. RESULTS: The strongest stainings of all proteins were observed in the middle zones of all 3 groups. The positive staining rates of BMP4 and IHH were significantly lower in the OA and KBD groups than those in the N group in all 3 zones. The positive staining rates of BMP2 and SHH tend to be lower in the OA and KBD groups than those in the N group in the deep zone, while higher in the OA and KBD groups than those in the N group in superficial and middle zones. CONCLUSIONS: Altered expression of the HH pathway proteins BMP2, BMP4, SHH, and IHH was found in OA and KBD articular cartilage. There seemed to be a compensatory effect between SHH and IHH in cartilage damage. Further studies on the pathogenesis of OA and KBD may be carried out from these aspects in the future.


Subject(s)
Cartilage, Articular , Kashin-Beck Disease , Osteoarthritis , Adult , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Hedgehog Proteins/metabolism , Humans , Osteoarthritis/metabolism
17.
Int J Mol Sci ; 22(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34769367

ABSTRACT

Fluorine is widely dispersed in nature and has multiple physiological functions. Although it is usually regarded as an essential trace element for humans, this view is not held universally. Moreover, chronic fluorosis, mainly characterized by skeletal fluorosis, can be induced by long-term excessive fluoride consumption. High concentrations of fluoride in the environment and drinking water are major causes, and patients with skeletal fluorosis mainly present with symptoms of osteosclerosis, osteochondrosis, osteoporosis, and degenerative changes in joint cartilage. Etiologies for skeletal fluorosis have been established, but the specific pathogenesis is inconclusive. Currently, active osteogenesis and accelerated bone turnover are considered critical processes in the progression of skeletal fluorosis. In recent years, researchers have conducted extensive studies in fields of signaling pathways (Wnt/ß-catenin, Notch, PI3K/Akt/mTOR, Hedgehog, parathyroid hormone, and insulin signaling pathways), stress pathways (oxidative stress and endoplasmic reticulum stress pathways), epigenetics (DNA methylation and non-coding RNAs), and their inter-regulation involved in the pathogenesis of skeletal fluorosis. In this review, we summarised and analyzed relevant findings to provide a basis for comprehensive understandings of the pathogenesis of skeletal fluorosis and hopefully propose more effective prevention and therapeutic strategies.


Subject(s)
Bone Diseases, Metabolic/pathology , DNA Methylation , Epigenesis, Genetic , Fluorides/adverse effects , Fluorosis, Dental/pathology , Stress, Physiological , Animals , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/metabolism , Fluorosis, Dental/etiology , Fluorosis, Dental/metabolism , Humans , Signal Transduction
18.
Cartilage ; 13(2_suppl): 818S-825S, 2021 12.
Article in English | MEDLINE | ID: mdl-34151604

ABSTRACT

OBJECTIVE: To investigate the effects of low nutrition and trichothecenes-2 toxin (T-2) on human chondrocytes cell line C28/I2 and the gene expression levels of some chondroitin sulfate (CS)-modifying sulfotransferases. METHODS: The chondrocytes were divided into 4 intervention groups: (a) control group (Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 [DMEM/F-12] with fetal bovine serum [FBS]), (b) low-nutrition group (DMEM/F-12 without FBS), (c) T-2 group (DMEM/F-12 with FBS plus 20 ng/mL T-2), and (d) combined group (DMEM/F-12 without FBS plus 20 ng/mL T-2). Twenty-four hours postintervention, ultrastructural changes in the chondrocytes were observed by transmission electron microscopy (TEM). Live cell staining and methyl thiazolyl tetrazolium (MTT) assay were performed to observe cell viability. The expression of CS-modifying sulfotransferases, including carbohydrate sulfotransferase 3, 12, 13, 15 (CHST-3, CHST-12, CHST-13, and CHST-15, respectively), and uronyl 2-O-sulfotransferase (UST) were examined by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. RESULTS: The cells in the T-2 group and combined group had significantly lower live cell counts and relative survival rates than the control group. TEM pictures revealed decreased electron density of mitochondria in the low-nutrition group. The T-2 group and combined group both caused mitochondrial swelling, damage, and reduction in mitochondrial number. RT-qPCR showed a trend of altered expression of CHST and increased expression of UST genes under low-nutrition, T-2 toxin and combined interventions. CONCLUSIONS: These results show early-stage Kashin-Beck disease chondrocyte pathophysiology, consisting of chondrocyte cell damage and compensatory upregulation of CHST and UST genes.


Subject(s)
Chondrocytes , T-2 Toxin , Cell Line , Chondrocytes/metabolism , Chondroitin Sulfates/metabolism , Humans , Sulfotransferases/genetics , Sulfotransferases/metabolism , Sulfotransferases/pharmacology , T-2 Toxin/toxicity
19.
J Biomater Appl ; 35(10): 1347-1354, 2021 05.
Article in English | MEDLINE | ID: mdl-33487067

ABSTRACT

OBJECTIVE: To investigate the protective effect of chondroitin sulfate nano-selenium (SeCS) on chondrocyte of Kashin-Beck disease (KBD). METHODS: Chondrocyte samples were isolated from the cartilage of three male KBD patients (54-57 years old). The chondrocytes were respectively divided into four groups: (a) control group, (b) SeCS supplement group (100 ng/mL SeCS), (c) T-2 + SeCS supplement group (20 ng/mL T-2 + 100 ng/mL SeCS), and (d) T-2 group (20 ng/mL T-2). Live/dead staining and transmission electron microscopy (TEM) were used to observe cell viability and ultrastructural changes in chondrocytes respectively. Expressions of Caspase-9, cytochrome C (Cyt-C), and chondroitin sulfate (CS) structure-modifying sulfotransferases including carbohydrate sulfotransferase 3, 15 (CHST-3, CHST-15), and uronyl 2-O-sulfotransferase (UST) were examined by quantitative real-time polymerase chain reaction. RESULTS: After one- or three-days intervention, the number of living chondrocytes in the SeCS supplement group was higher than that in the control group, while it is opposite in the T-2 + SeCS supplement group and T-2 group. The cellular villi number in the surface increased in the SeCS supplement group compared with the control group. Mitochondrial morphology density was improved in the T-2 + SeCS supplement group compared with the T-2 group. Expressions of CHST-3, CHST-15, UST, Caspase-9, and Cyt-C on the mRNA level significantly increased in the T-2 + SeCS supplement group and T-2 group compared with the control group. CONCLUSIONS: SeCS supplement increased the number of living chondrocytes, improved the ultrastructure, and altered the expressions of CS structure-modifying sulfotransferases, Caspase-9, and Cyt-C.


Subject(s)
Chondroitin Sulfates/chemistry , Nanostructures/chemistry , Selenium/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cartilage, Articular/cytology , Caspase 9/genetics , Caspase 9/metabolism , Cell Survival/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Humans , Kashin-Beck Disease , Male , Middle Aged , Mitochondria/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Up-Regulation/drug effects , Carbohydrate Sulfotransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...