Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Plants (Basel) ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732446

ABSTRACT

SCARECROW-LIKE6 (SCL6) plays a role in the formation and maintenance of the meristem. In Larix kaempferi (Lamb.) Carr., an important afforestation tree species in China, SCL6 (LaSCL6) has two alternative splicing variants-LaSCL6-var1 and LaSCL6-var2-which are regulated by microRNA171. However, their roles are still unclear. In this study, LaSCL6-var1 and LaSCL6-var2 were transformed into the Arabidopsis thaliana (L.) Heynh. genome, and the phenotypic characteristics of transgenic A. thaliana, including the germination percentage, root length, bolting time, flower and silique formation times, inflorescence axis length, and branch and silique numbers, were analyzed to reveal their functions. It was found that LaSCL6-var1 and LaSCL6-var2 overexpression shortened the root length by 41% and 31%, respectively, and increased the inflorescence axis length. Compared with the wild type, the bolting time in transgenic plants was delayed by approximately 2-3 days, the first flower and silique formation times were delayed by approximately 3-4 days, and the last flower and silique formation times were delayed by about 5 days. Overall, the life cycle in transgenic plants was prolonged by approximately 5 days. These results show that LaSCL6 overexpression inhibited the transitions from the vegetative meristem to inflorescence meristem and from the flower meristem to meristem arrest in A. thaliana, revealing the roles of LaSCL6-var1 and LaSCL6-var2 in the fate transition and maintenance of the meristem.

2.
Sci Rep ; 14(1): 11295, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760401

ABSTRACT

Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.


Subject(s)
Microbiota , Plant Roots , Pleurotus , Rhizosphere , Soil Microbiology , Soil , Tea , Pleurotus/growth & development , Pleurotus/metabolism , Plant Roots/microbiology , Tea/microbiology , Soil/chemistry , Camellia sinensis/microbiology , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Fungi/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Hydrogen-Ion Concentration
3.
Front Microbiol ; 15: 1386136, 2024.
Article in English | MEDLINE | ID: mdl-38650887

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.

4.
Environ Int ; 186: 108639, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603815

ABSTRACT

Antimicrobial resistance is considered to be one of the biggest public health problems, and airborne transmission is an important but under-appreciated pathway for the spread of antibiotic resistance genes (ARGs) in the environment. Previous research has shown pharmaceutical factories to be a major source of ARGs and antibiotic resistant bacteria (ARB) in the surrounding receiving water and soil environments. Pharmaceutical factories are hotspots of antibiotic resistance, but the atmospheric transmission and its environmental risk remain more concerns. Here, we conducted a metagenomic investigation into the airborne microbiome and resistome in three pharmaceutical factories in China. Soil (average: 38.45%) and wastewater (average: 28.53%) were major contributors of airborne resistome. ARGs (vanR/vanS, blaOXA, and CfxA) conferring resistance to critically important clinically used antibiotics were identified in the air samples. The wastewater treatment area had significantly higher relative abundances of ARGs (average: 0.64 copies/16S rRNA). Approximately 28.2% of the detected airborne ARGs were found to be associated with plasmids, and this increased to about 50% in the wastewater treatment area. We have compiled a list of high-risk airborne ARGs found in pharmaceutical factories. Moreover, A total of 1,043 viral operational taxonomic units were identified and linked to 47 family-group taxa. Different CRISPR-Cas immune systems have been identified in bacterial hosts in response to phage infection. Similarly, higher phage abundance (average: 2451.70 PPM) was found in the air of the wastewater treatment area. Our data provide insights into the antibiotic resistance gene profiles and microbiome (bacterial and non-bacterial) in pharmaceutical factories and reveal the potential role of horizontal transfer in the spread of airborne ARGs, with implications for human and animal health.


Subject(s)
Air Microbiology , Anti-Bacterial Agents , Microbiota , Wastewater , Microbiota/genetics , Microbiota/drug effects , China , Anti-Bacterial Agents/pharmacology , Wastewater/microbiology , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics
5.
Cell Rep ; 43(4): 114077, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38592974

ABSTRACT

Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.


Subject(s)
Embryonic Development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , Mice , Enhancer Elements, Genetic/genetics , RNA/metabolism , RNA/genetics , Female , Embryo, Mammalian/metabolism , Zygote/metabolism , Gene Regulatory Networks , Male
6.
Heliyon ; 10(6): e27690, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533037

ABSTRACT

Background: Previous studies have revealed dexmedetomidine have potential protective effects on vital organs by inhibiting the release of inflammatory cytokines. To investigate the effects of dexmedetomidine on sepsis, especially in the initial inflammatory stage of sepsis. RAW264.7 cells were used as the cell model in this study to elucidate the underlying mechanisms. Methods: In this study, we conducted several assays to investigate the mechanisms of dexmedetomidine and HOTAIR in sepsis. Cell viability was assessed using the CCK-8 kit, while inflammation responses were measured using ELISA for IL-1ß, IL-6, and TNF-α. Additionally, we employed qPCR, MeRIP, and RIP to further explore the underlying mechanisms. Results: Our findings indicate that dexmedetomidine treatment enhanced cell viability and reduced the production of inflammatory cytokines in LPS-treated RAW264.7 cells. Furthermore, we observed that the expression of HOTAIR was increased in LPS-treated RAW264.7 cells, which was then decreased upon dexmedetomidine pre-treatment. Further investigation demonstrated that HOTAIR could counteract the beneficial effects of dexmedetomidine on cell viability and cytokine production. Interestingly, we discovered that YTHDF1 targeted HOTAIR and was upregulated in LPS-treated RAW264.7 cells, but reduced in dexmedetomidine treatment. We also found that YTHDF1 increased HOTAIR and HOTAIR m6A levels. Conclusions: Collectively, our results suggest that dexmedetomidine downregulates HOTAIR and YTHDF1 expression, which in turn inhibits the biological behavior of LPS-treated RAW264.7 cells. This finding has potential implications for the prevention and treatment of sepsis-induced kidney injury.

7.
J Ethnopharmacol ; 327: 117994, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38437889

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ixeris sonchifolia alias Kudiezi, it was named Ixeris sonchifolia (Bunge) Hance, a synonym for Crepidiastrum sonchifolium (Bunge) Pak & Kawano in the https://www.iplant.cn/. And it was first published in J. Linn. Soc., Bot. 13: 108 (1873), which was named Ixeris sonchifolia (Maxim.) Hance in the MPNS (http://mpns.kew.org). As a widely distributed medicinal and edible wild plant, it possesses unique bitter-cold characteristics and constituents with various pharmacological activities. Its main antitumor substances, same as artemisinin and paclitaxel, are classified as terpenoids and have become research foci in recent years. However, its specific biological activity and role in antitumor treatment remain largely unclear. AIM OF THE STUDY: This study aimed to elucidate the molecular targets and potential mechanisms of hepatocellular carcinoma apoptosis induced by Ixeris sonchifolia. MATERIALS AND METHODS: We used network pharmacology methods to analyze and screen the active ingredients and possible underlying mechanisms of Ixeris sonchifolia in treating liver cancer and employed integrative time- and dose-dependent toxicity, transcriptomics, and molecular biology approaches to comprehensively verify the function of Ixeris sonchifolia extract (IsE) in human hepatoblastoma cell (HepG2) apoptosis and its potential mechanism. RESULTS: A total of 169 common targets were screened by network pharmacology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that IsE inhibited HepG2 cell activity in a time- and dose-dependent manner. Western blot analysis confirmed that IsE promoted HepG2 cell apoptosis by inhibiting the PI3K/AKT signaling pathway and that the PI3K/AKT inhibitor LY294002 also substantially enhanced IsE-induced apoptosis. The PI3K/AKT signaling pathway exhibited significant differences compared to that in the control group. CONCLUSION: Combining network pharmacology with experimental verification, IsE inhibited mitochondrial function and the PI3K/AKT pathway while inducing hepatoma cell apoptosis. IsE may have promising potential for liver cancer treatment and chemoprevention.


Subject(s)
Asteraceae , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Network Pharmacology , Apoptosis , Molecular Docking Simulation
8.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323828

ABSTRACT

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Endopeptidases/metabolism , Internal Ribosome Entry Sites , 3C Viral Proteases , Ubiquitins/genetics , Ubiquitins/metabolism
9.
J Phys Chem Lett ; 15(6): 1546-1552, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38299495

ABSTRACT

Humidity has exhibited experimentally either beneficial or detrimental effects on the charge carrier lifetime of CH3NH3PbI3 perovskites, leaving the mechanism unresolved. By using ab initio nonadiabatic molecular dynamics simulations, we unveil the dual role of humidity stemming from the complex interplay between water and defects. Beneficially, water passivates iodine vacancies (VI) or grain boundaries (GBs), mitigating electron trapping by reducing nonadiabatic coupling and delaying charge recombination. However, when VI and GBs coexist, water molecules make the two unsaturated lead atoms approach closer and exacerbate electron trapping by deepening the Pb-dimer electron trap that was created by the VI defect, shortening the carrier lifetime to half of pristine CH3NH3PbI3. The study uncovers the origin of the positive and negative effects of humidity on the charge carrier lifetime of perovskites and offers strategies for improving perovskite devices, particularly by avoiding simultaneous point defects and GBs.

10.
Int J Biol Sci ; 20(3): 1004-1023, 2024.
Article in English | MEDLINE | ID: mdl-38250155

ABSTRACT

Macrophage polarization is a critical process that regulates in inflammation, pathogen defense, and tissue repair. Here we demonstrate that MST1/2, a core kinase of Hippo pathway and a recently identified regulator of inflammation, plays a significant role in promoting M2 polarization. We provide evidence that inhibition of MST1/2, achieved through either gene-knockout or pharmacological treatment, leads to increased M1 polarization in a YAP-dependent manner, resulting in the development of M1-associated inflammatory disorders. Moreover, MST1/2 inhibition also leads to a substantial reduction in M2 polarization, but this occurs through the STAT6 and MEK/ERK signaling. The STAT6 is independent of YAP, but MEK/ERK is dependent of YAP. Consistent with these observations, both MST1/2-conditional knockout mice and wild-type mice treated with XMU-MP-1, a chemical inhibitor of MST1/2, exhibited reduced M2-related renal fibrosis, while simultaneously displaying enhanced LPS-mediated inflammation and improved clearance of MCR3-modified gram-negative bacteria. These findings uncover a novel role of MST1/2 in regulating macrophage polarization and establish it as a potential therapeutic target for the treatment of macrophage-related fibrotic diseases.


Subject(s)
Inflammation , Macrophage Activation , Protein Serine-Threonine Kinases , Animals , Mice , Gene Knockout Techniques , Inflammation/genetics , Macrophages , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases , Protein Serine-Threonine Kinases/genetics
11.
J Hazard Mater ; 465: 133468, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219584

ABSTRACT

Microporous organic networks (MONs) are highly porous materials that are particularly useful in analytical chemistry. However, the use of these materials is often limited by the functional groups available on their surface. Here, we described the polymerization of a sea urchin-like structure material at ambient temperature, that was functionalized with hydroxyl, carboxyl, and triazine groups and denoted as OH-COOH-MON-TEPT. A substantial proportion of OH-COOH-MON-TEPT was intricately decorated EDA-Fe3O4, creating a well-designed configuration (EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC) for superior adsorption of the target analytes phenylurea herbicides (PUHs) via magnetic solid-phase extraction (MSPE). The proposed method showed remarkably low limits of detection ranging from 0.03 to 0.22 ng·L-1. Experimental investigations and theoretical analyses unveiled the adsorption mode between EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC and PUHs. These findings establish a robust foundation for potential applications of EDA-Fe3O4 @OH-COOH-MON-TEPT-EDC in the analysis of various polar contaminants.

12.
ACS Infect Dis ; 10(2): 377-383, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38252850

ABSTRACT

Shigellosis poses an ongoing global public health threat. The presence and length of the O-antigen in lipopolysaccharide play critical roles in Shigella pathogenesis. The plasmid-mediated opt gene encodes a phosphoethanolamine (PEtN) transferase that catalyzes the addition of PEtN to the O-antigen of Shigella flexneri serotype X and Y strains, converting them into serotype Xv and Yv strains, respectively. Since 2002, these modified strains have become prevalent in China. Here we demonstrate that PEtN-mediated O-antigen modification in S. flexneri increase the severity of corneal infection in guinea pigs without any adaptive cost. This heightened virulence is associated with epithelial cell adhesion and invasion, as well as an enhanced inflammatory response of macrophage. Notably, PEtN addition allow S. flexneri to attenuate the binding of complement C3 and better resist phagocytosis, potentially contributing to the retention of S. flexneri in the host environment.


Subject(s)
Ethanolamines , O Antigens , Shigella flexneri , Animals , Guinea Pigs , O Antigens/genetics , O Antigens/metabolism , Serotyping , Plasmids , Shigella flexneri/genetics , Shigella flexneri/metabolism
13.
Microbiol Resour Announc ; 13(1): e0082923, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38051076

ABSTRACT

Here, we report a draft genome sequence of endophytic fungus Talaromyces purpureogenus strain YAFEF302, isolated from Juglans sigillata. The genome resource will support future research into potential secondary metabolite diversity of this fungus.

14.
J Hazard Mater ; 465: 133082, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38016315

ABSTRACT

Antibiotic resistance genes (ARGs) are prevalent in the livestock environment, but little is known about impacts of animal farming on the gut antibiotic resistome of local people. Here we conducted metagenomic sequencing to investigate gut microbiome and resistome of residents in a swine farming village as well as environmental relevance by comparing with a nearby non-farming village. Results showed a shift of gut microbiome towards unhealthy status in the residents of swine farming village, with an increased abundance and diversity in pathogens and ARGs. The resistome composition in human guts was more similar with that in swine feces and air than that in soil and water. Mobile gene elements were closely associated with the prevalence of gut resistome. Some plasmid-borne ARGs were colocalized in similar genetic contexts in gut and environmental samples. Metagenomic binning obtained 47 ARGs-carrying families in human guts, and therein Enterobacteriaceae posed the highest threats in antibiotic resistance and virulence. Several ARGs-carrying families were shared by gut and environmental samples (mainly in swine feces and air), and the ARGs were evolutionarily conservative within genera. The findings highlight that swine farming can shape gut resistome of local people with close linkage to farm environmental exposures.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Swine , Humans , Animals , Farms , Agriculture , Livestock
15.
Small Methods ; 8(3): e2301261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010956

ABSTRACT

With the extensive attention of DNA hydrogels in biomedicine, biomaterial, and other research fields, more and more functional DNA hydrogels have emerged to match the various needs. Incorporating nanomaterials into the hydrogel network is an emerging strategy for functional DNA hydrogel construction. Surprisingly, nanomaterials-based DNA hydrogels can be engineered to possess favorable properties, such as dynamic mechanical properties, excellent optical properties, particular electrical properties, perfect encapsulation properties, improved magnetic properties, and enhanced antibacterial properties. Herein, the preparation strategies of nanomaterials-based DNA hydrogels are first highlighted and then different nanomaterial designs are used to demonstrate the functional regulation of DNA hydrogels to achieve specific properties. Subsequently, representative applications in biosensing, drug delivery, cell culture, and environmental protection are introduced with some selected examples. Finally, the current challenges and prospects are elaborated. The study envisions that this review will provide an insightful perspective for the further development of functional DNA hydrogels.


Subject(s)
Hydrogels , Nanostructures , DNA , Drug Delivery Systems , Biocompatible Materials
16.
Toxics ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37755805

ABSTRACT

A triplex DNA electrochemical sensor based on reduced graphene oxide (rGO) and electrodeposited gold nanoparticles (EAu) was simply fabricated for Pb2+ detection. The glass carbon electrode (GCE) sequentially electrodeposited with rGO and EAu was further modified with a triplex DNA helix that consisted of a guanine (G)-rich circle and a stem of triplex helix based on T-A•T base triplets. With the existence of Pb2+, the DNA configuration which was formed via the Watson-Crick and Hoogsteen base pairings was split and transformed into a G-quadruplex. An adequate electrochemical response signal was provided by the signal indicator methylene blue (MB). The proposed sensor demonstrated a linear relationship between the differential pulse voltammetry (DPV) peak currents and the logarithm of Pb2+ concentrations from 0.01 to 100.00 µM with a detection limit of 0.36 nM. The proposed sensor was also tested with tap water, river and medical wastewater samples with qualified recovery and accuracy and represented a promising method for Pb2+ detection.

17.
Am J Hum Genet ; 110(10): 1787-1803, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37751738

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.


Subject(s)
Hernias, Diaphragmatic, Congenital , Osteoporosis , Adult , Humans , Male , Animals , Mice , Hernias, Diaphragmatic, Congenital/genetics , Actins/genetics , Mutation, Missense/genetics , Osteoporosis/genetics
18.
Chemosphere ; 335: 139154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37290502

ABSTRACT

Diflubenzuron has been applied in agriculture and aquaculture, and its residues in ecological environment and food chain could result in chronic exposure and long-term toxicity effects for human health. However, limited information is available regarding diflubenzuron levels in fish and associated risk assessment. This study performed the analysis for dynamic bioaccumulation and elimination distribution of diflubenzuron in carp tissues. The results indicated that diflubenzuron was absorbed and enriched by fish body along with higher enrichment in lipid-rich tissues of fish. The peak concentration in carp muscle reached 6-fold of diflubenzuron concentration in aquaculture water. The median lethal concentration (LC50) of diflubenzuron at 96 h was 12.29 mg/L, presented low toxicity to carp. Risk assessment results showed that the chronic risk from dietary exposure to diflubenzuron through carp consumption for Chinese residents of children and adolescents, adults and elderly people were acceptable, while posed a certain risk for young children. This study provided the reference for pollution control, risk assessment and scientific management of diflubenzuron.


Subject(s)
Carps , Diflubenzuron , Water Pollutants, Chemical , Animals , Child , Humans , Aged , Child, Preschool , Adolescent , Diflubenzuron/toxicity , Water Pollutants, Chemical/toxicity , Bioaccumulation , Environmental Pollution
19.
Opt Express ; 31(11): 17782-17791, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381503

ABSTRACT

Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

20.
Colloids Surf B Biointerfaces ; 227: 113353, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196463

ABSTRACT

Radiation-induced pulmonary fibrosis (RIPF), one type of pulmonary interstitial diseases, is frequently observed following radiation therapy for chest cancer or accidental radiation exposure. Current treatments against RIPF frequently fail to target lung effectively and the inhalation therapy is hard to penetrate airway mucus. Therefore, this study synthesized mannosylated polydopamine nanoparticles (MPDA NPs) through one-pot method to treat RIPF. Mannose was devised to target M2 macrophages in the lung through CD 206 receptor. MPDA NPs showed higher efficiency of penetrating mucus, cellular uptake and ROS-scavenging than original polydopamine nanoparticles (PDA NPs) in vitro. In RIPF mice, aerosol administration of MPDA NPs significantly alleviated the inflammatory, collagen deposition and fibrosis. The western blot analysis demonstrated that MPDA NPs inhibited TGF-ß1/Smad3 signaling pathway against pulmonary fibrosis. Taken together this study provide a novel M2 macrophages-targeting nanodrugs through aerosol delivery for the prevention and targeted treatment for RIPF.


Subject(s)
Nanoparticles , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Lung/metabolism , Signal Transduction , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...