Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27690, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533037

ABSTRACT

Background: Previous studies have revealed dexmedetomidine have potential protective effects on vital organs by inhibiting the release of inflammatory cytokines. To investigate the effects of dexmedetomidine on sepsis, especially in the initial inflammatory stage of sepsis. RAW264.7 cells were used as the cell model in this study to elucidate the underlying mechanisms. Methods: In this study, we conducted several assays to investigate the mechanisms of dexmedetomidine and HOTAIR in sepsis. Cell viability was assessed using the CCK-8 kit, while inflammation responses were measured using ELISA for IL-1ß, IL-6, and TNF-α. Additionally, we employed qPCR, MeRIP, and RIP to further explore the underlying mechanisms. Results: Our findings indicate that dexmedetomidine treatment enhanced cell viability and reduced the production of inflammatory cytokines in LPS-treated RAW264.7 cells. Furthermore, we observed that the expression of HOTAIR was increased in LPS-treated RAW264.7 cells, which was then decreased upon dexmedetomidine pre-treatment. Further investigation demonstrated that HOTAIR could counteract the beneficial effects of dexmedetomidine on cell viability and cytokine production. Interestingly, we discovered that YTHDF1 targeted HOTAIR and was upregulated in LPS-treated RAW264.7 cells, but reduced in dexmedetomidine treatment. We also found that YTHDF1 increased HOTAIR and HOTAIR m6A levels. Conclusions: Collectively, our results suggest that dexmedetomidine downregulates HOTAIR and YTHDF1 expression, which in turn inhibits the biological behavior of LPS-treated RAW264.7 cells. This finding has potential implications for the prevention and treatment of sepsis-induced kidney injury.

2.
Asian Pac J Trop Med ; 9(5): 474-7, 2016 May.
Article in English | MEDLINE | ID: mdl-27261857

ABSTRACT

OBJECTIVE: To discuss the mechanism of low molecular weight GTP binding protein RAC1 in the injury of neural function based on building the rat model of cerebral ischemia reperfusion. METHODS: Middle cerebral artery of rats was ligated and the ligature was released to restore the perfusion after 2 h, the rat model of cerebral ischemia reperfusion injury was built, while the middle cerebral artery was ligated. The rats were randomly divided into the sham group, cerebral ischemia reperfusion group (I/R group) and the group with the injection of RAC1 activity inhibitor NSC23766 (NSC group). The survival and neurological severity score of rats in each group were observed and recorded. Nissl staining was employed to observe the nerve cells, and Western blot to detect expression of RAC1, superoxide dismutase and malondialdehyde. RESULTS: Number of nerve cells for rats in NSC group was significantly more than that in I/R group, but significantly less than that in sham group, with the statistical difference (P < 0.05). The brain water content for rats in NSC group was significantly lower than that in I/R group, but significantly higher than that in sham group, with the statistical difference (P < 0.05). The expression of RAC1 and malondialdehyde for rats in NSC group was significantly lower than that in I/R group, but higher than that in sham group; while the expression of superoxide dismutase was lower than that in sham group, but higher than that in I/R group, with the statistical difference (P < 0.05). CONCLUSIONS: The inhibition of RAC1 activity can reduce the oxidative stress, reduce the neurologic impairment because of cerebral ischemia reperfusion and thus protect the neural function.

SELECTION OF CITATIONS
SEARCH DETAIL
...