Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Hazard Mater ; 470: 134217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583197

ABSTRACT

Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per µmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants.


Subject(s)
Biodegradation, Environmental , Flame Retardants , Oxidation-Reduction , Phenols , Polybrominated Biphenyls , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/chemistry , Anaerobiosis , Aerobiosis , Phenols/metabolism , Flame Retardants/metabolism , Benzhydryl Compounds/metabolism , Sphingomonas/metabolism , Halogenation , Soil Pollutants/metabolism
2.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471945

ABSTRACT

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Subject(s)
Chloroflexi , Ethylene Dichlorides , Tetrachloroethylene , Trichloroethylene , Humans , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Ethylenes , Dichloroethylenes , Biodegradation, Environmental , Chloroflexi/genetics
3.
Adv Mater ; 36(11): e2310559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084796

ABSTRACT

Dielectric energy-storage capacitors, known for their ultrafast discharge time and high-power density, find widespread applications in high-power pulse devices. However, ceramics featuring a tetragonal tungsten bronze structure (TTBs) have received limited attention due to their lower energy-storage capacity compared to perovskite counterparts. Herein, a TTBs relaxor ferroelectric ceramic based on the Gd0.03 Ba0.47 Sr0.485-1.5 x Smx Nb2 O6 composition, exhibiting an ultrahigh recoverable energy density of 9 J cm-3 and an efficiency of 84% under an electric field of 660 kV cm-1 is reported. Notably, the energy storage performance of this ceramic shows remarkable stability against frequency, temperature, and cycling electric field. The introduction of Sm3+ doping is found to create weakly coupled polar nanoregions in the Gd0.03 Ba0.47 Sr0.485 Nb2 O6 ceramic. Structural characterizations reveal that the incommensurability parameter increases with higher Sm3+ content, indicative of a highly disordered A-site structure. Simultaneously, the breakdown strength is also enhanced by raising the conduction activation energy, widening the bandgap, and reducing the electric field-induced strain. This work presents a significant improvement on the energy storage capabilities of TTBs-based capacitors, expanding the material choice for high-power pulse device applications.

4.
Environ Sci Technol ; 58(2): 1299-1311, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38113523

ABSTRACT

Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per µmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.


Subject(s)
Humic Substances , Polybrominated Biphenyls , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Biodegradation, Environmental
5.
Chemosphere ; 330: 138749, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086982

ABSTRACT

4-Chloro-2-methylphenoxyacetic acid (MCPA) is a widely used herbicide across the world. MCPA is persistent and easily transports into anoxic environment, such as groundwater, sediments and deep soils. However, little research on anaerobic microbial degradation of MCPA was carried out. The functional microorganisms as well as the catabolic pathway are still unknown. In this research, an anaerobic MCPA-degrading bacterial consortium was enriched from the river sediment near a pesticide-manufacturing plant. After about 6 months' acclimation, the MCPA transformation rate of the consortium reached 4.32 µmol g-1 day-1, 25 times faster than that of the original sludge. 96% of added MCPA (2.5 mM) was degraded within 9 d of incubation. Three metabolites including 4-chloro-2-methylphenol (MCP), 2-methylphenol (2-MP) and phenol were identified during the anaerobic degradation of MCPA. An anaerobic catabolic pathway was firstly proposed: firstly, MCPA was transformed to MCP via the cleavage of the aryl ether, then MCP was reductively dechlorinated to 2-MP which was further demethylated to phenol. The 16S rRNA gene amplicon sequencing revealed a substantial shift in the bacterial community composition after the acclimation. SBR1031, Acidaminococcaceae, Aminicenantales, Syntrophorhabdus, Acidaminobacter, Bacteroidetes_vadinHA17, Methanosaeta, Bathyarchaeia, KD4-96, Anaeromyxobacter, and Dehalobacter were significantly increased in the enriched consortium after acclimation, and positively correlated with the anaerobic degradation of MCPA as suggested by heat map correlation analysis. This study provides a basis for further elucidation of the anaerobic catabolism of MCPA, and contributes to developing efficient and low-cost anaerobic treatment technologies for MCPA pollution.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Herbicides , Sewage , Anaerobiosis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Herbicides/analysis , Bacteria/genetics , Bacteria/metabolism , Phenol/metabolism , Acclimatization
6.
Environ Pollut ; 325: 121443, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36921661

ABSTRACT

1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 µM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 µmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per µmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.


Subject(s)
Chloroflexi , Dehalococcoides , Humans , Dehalococcoides/genetics , RNA, Ribosomal, 16S/genetics , Ecosystem , Biodegradation, Environmental , Ethylenes , Chloroflexi/genetics
7.
J Agric Food Chem ; 70(41): 13340-13348, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36198124

ABSTRACT

Acetochlor, an important chloroacetamide herbicide (CAAH) widely used in agriculture, has resulted in environmental contamination, especially of anoxic habitats. In this study, a sulfate-reducing bacterium, designated as SRB-5, was isolated from anaerobic activated sludge and was identified as Cupidesulfovibrio sp. This bacterium possesses a novel anaerobic pathway capable of degrading acetochlor. In this pathway, sulfate is first reduced to sulfide, which attacks the C-Cl bond of acetochlor and abiotically forms acetochlor-thioalcohol and dis-S-acetochlor. These further undergo microbial degradation, producing the intermediates acetochlor ethanesulfonic acid, 2-methyl-6-ethylaniline, and 2-ethylaniline. The degradation half-times of acetochlor (100 µM) by strain SRB-5 were 2.4 and 4.2 days in industrial wastewater and paddy sludge, respectively. Strain SRB-5 could also degrade alachlor, propisochlor, butachlor, pretilachlor, and metolachlor, and the degradation kinetics fit the pseudo-first-order kinetics equation. This work highlights the potential application of strain SRB-5 for the remediation of CAAHs-contaminated sites.


Subject(s)
Herbicides , Herbicides/metabolism , Sulfates , Sewage/microbiology , Biodegradation, Environmental , Anaerobiosis , Wastewater , Bacteria/metabolism , Sulfides
8.
Environ Res ; 215(Pt 3): 114420, 2022 12.
Article in English | MEDLINE | ID: mdl-36167116

ABSTRACT

Anaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil. It was found that the BTEX degradation capacities of the anaerobic microbiota gradually increased along with the increasing redox potentials of the exogenous electron acceptors supplemented (WE: Without exogenous electron acceptors < SS: Sulfate supplement < FS: Ferric iron supplement < NS: Nitrate supplement), while the complexity of the co-occurring networks (e.g., avgK and links) of the microbiota gradually decreased, showing that microbiota supplemented with higher redox potential electron acceptors were less dependent on the formation of complex microbial interactions to perform BTEX degradation. Microbiota NS showed the highest degrading capacity and the broadest substrate-spectrum for BTEX, and it could metabolize BTEX through multiple modules which not only contained fewer species but also different key microbial taxa (eg. Petrimonas, Achromobacter and Comamonas). Microbiota WE and FS, with the highest methanogenic capacities, shared common core species such as Sedimentibacter, Acetobacterium, Methanobacterium and Smithella/Syntrophus, which cooperated with Geobacter (microbiota WE) or Desulfoprunum (microbiota FS) to perform BTEX degradation and methane production. This study demonstrates that electron acceptors may alter microbial function by reshaping microbial community structure and regulating microbial interactions and provides guidelines for electron acceptor selection for bioremediation of aromatic pollutant-contaminated anaerobic sites.


Subject(s)
Environmental Pollutants , Microbiota , Anaerobiosis , Benzene/chemistry , Benzene Derivatives , Biodegradation, Environmental , Electrons , Iron , Methane , Nitrates/chemistry , Oxidants , Soil , Sulfates/chemistry , Toluene/chemistry , Xylenes
9.
Environ Sci Technol ; 56(17): 12237-12246, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35951369

ABSTRACT

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile, TePN) is one of the most widely used fungicides all over the world. Its major environmental transformation product 4-hydroxy-chlorothalonil (4-hydroxy-2,5,6-trichloroisophthalonitrile, 4-OH-TPN) is more persistent, mobile, and toxic and is frequently detected at a higher concentration in various habitats compared to its parent compound TePN. Further microbial transformation of 4-OH-TPN has never been reported. In this study, we demonstrated that 4-OH-TPN underwent complete microbial reductive dehalogenation to 4-hydroxy-isophthalonitrile via 4-hydroxy-dichloroisophthalonitrile and 4-hydroxy-monochloroisophthalonitrile. 16S rRNA gene amplicon sequencing demonstrated that Dehalogenimonas species was enriched from 6% to 17-22% after reductive dechlorination of 77.24 µmol of 4-OH-TPN. Meanwhile, Dehalogenimonas copies increased by one order of magnitude and obtained a yield of 1.78 ± 1.47 × 108 cells per µmol Cl- released (N = 6), indicating that 4-OH-TPN served as the terminal electron acceptor for organohalide respiration of Dehalogenimonas species. A draft genome of Dehalogenimonas species was assembled through metagenomic sequencing, which harbors 30 putative reductive dehalogenase genes. Syntrophobacter, Acetobacterium, and Methanosarcina spp. were found to be the major non-dechlorinating populations in the microbial community, who might play important roles in the reductive dechlorination of 4-OH-TPN by the Dehalogenimonas species. This study first reports that Dehalogenimonas sp. can also respire on the seemingly dead-end product of TePN, paving the way to complete biotransformation of the widely present TePN and broadening the substrate spectrum of Dehalogenimonas sp. to polychlorinated hydroxy-benzonitrile.


Subject(s)
Chloroflexi , Biodegradation, Environmental , Biotransformation , Chloroflexi/metabolism , Nitriles , RNA, Ribosomal, 16S/genetics
10.
Environ Res ; 214(Pt 2): 113921, 2022 11.
Article in English | MEDLINE | ID: mdl-35863452

ABSTRACT

Triclocarban, one of the emerging pollutants, has been accumulating, and it is frequently detected in wastewater. Due to its toxicity and persistence, the efficient removal of triclocarban from wastewater systems is challenging. Genetic bioaugmentation with transferable catabolic plasmids has been considered to be a long-lasting method to clean up pollutants in continuous flow wastewater treatment systems. In this study, bioaugmentation with Pseudomonas putida KT2440, harboring the transferrable triclocarban-catabolic plasmid pDCA-1-gfp-tccA2, rapidly converted 50 µM triclocarban in wastewater into 3,4-dichloroaniline and 4-chloroaniline, which are further mineralized more easily. RT-qPCR results showed that the ratio of the copy number of pDCA-1-gfp-tccA2 to the cell number of strain KT2440 gradually increased during genetic bioaugmentation, suggesting horizontal transfer and proliferation of the plasmid. By using DNA stable isotope probing (SIP) and amplicon sequencing, OTU86 (Escherichia-Shigella), OTU155 (Citrobacter), OTU5 (Brucella), and OTU15 (Enterobacteriaceae) were found to be the potential recipients of the plasmid pDCA-1-gfp-tccA2 in the wastewater bacterial community. Furthermore, three transconjugants in the genera of Escherichia, Citrobacter, and Brucella showing triclocarban-degrading abilities were isolated from the wastewater. This study develops a new method for removing triclocarban from wastewater and provides insights into the environmental behavior of transferrable catabolic plasmids in bacterial community in wastewater systems.


Subject(s)
Environmental Pollutants , Pseudomonas putida , Carbanilides , Environmental Pollutants/metabolism , Plasmids/genetics , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Wastewater
11.
J Clin Densitom ; 25(2): 141-149, 2022.
Article in English | MEDLINE | ID: mdl-34716086

ABSTRACT

In vitro and vivo studies indicate that oxidative stress contributes to bone loss. Fluorescent oxidation products (FlOPs) are novel biomarkers of oxidative stress; they reflect global oxidative damage of lipids, proteins, carbohydrates, and DNA. However, whether FlOPs are associated with bone mineral density (BMD) is still unclear. In the present study, we examined the association between FlOPs and BMD among male veterans. This cross-sectional study was conducted among participants recruited from the Department of Medical Examination, The Second Hospital of Jilin University in Jilin, China. We identified male veterans who were at least 50 y old between June and October of 2019. Plasma FlOPs were measured with a fluorescent microplate reader (excitation/emission wavelength: 320/420 nm). BMD were measured by dual-energy X-ray absorptiometry (DXA). The association between FlOPs and BMD was tested by multivariable linear regression models. A total of 164 male veterans were enrolled in the study, the average age was 56.6 y. After adjusting for covariates, veterans who had FlOP levels in the highest tertile had a statistically significant lower femoral neck (ß = -0.044; p = 0.007) and total hip BMD (ß = -0.045; p = 0.020) as compared to those with FlOP levels in the lowest tertile. Similar results were found when FlOPs were treated as a continuous variable (per 1-SD increase, ß = -0.014 and p = 0.033 for femoral neck BMD; ß = -0.016 and p = 0.047 for total hip BMD). Higher FlOP levels were associated with lower BMD among male veterans.


Subject(s)
Bone Density , Veterans , Absorptiometry, Photon , Cross-Sectional Studies , Female , Femur Neck , Humans , Male , Middle Aged
12.
Curr Microbiol ; 78(5): 2165-2172, 2021 May.
Article in English | MEDLINE | ID: mdl-33839887

ABSTRACT

A Gram-negative, facultative anaerobic, non-lagellated and rod-shaped bacterium FML-4T was isolated from a chlorothalonil-contaminated soil in Nanjing, China. Phylogenetic analyses of 16S rRNA genes revealed that the strain FML-4T shared the highest sequence similarity of 97.1% with Ciceribacter thiooxidans KCTC 52231T, followed by Rhizobium rosettiformans CCM 7583T (97.0%) and R. daejeonense KCTC 12121T (96.8%). Although the sequence similarities of the housekeeping genes thrC, rceA, glnII, and atpD between strain FML-4T and C. thiooxidans KCTC 52231T were 83.8%, 88.7%, 86.2%, and 92.0%, respectively, strain FML-4T formed a monophyletic clade in the cluster of Rhizobium species. Importantly, the feature gene of the genus Rhizobium, nifH gene (encoding the dinitrogenase reductase), was detected in strain FML-4T but not in C. thiooxidans KCTC 52231T. In addition, strain FML-4T contained the summed feature 8 (C18:1ω7c and/or C18:1ω6c), C19:0 cyclo ω8c and C16:0 as the major fatty acids. Genome sequencing of strain FML-4T revealed a genome size of 7.3 Mbp and a G+C content of 63.0 mol%. Based on the results obtained by phylogenetic and chemotaxonomic analyses, phenotypic characterization, average nucleotide identity (ANI, similarity 77.3-75.4%), and digital DNA-DNA hybridization (dDDH, similarity 24.5-22.3%), it was concluded that strain FML-4T represented a novel species of the genus Rhizobium, for which the name Rhizobium flavescens sp. nov. was proposed (type strain FML-4T = CCTCC AB 2019354T = KCTC 62839T).


Subject(s)
Rhizobium , Bacterial Typing Techniques , China , DNA, Bacterial/genetics , Fatty Acids , Nitriles , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobiaceae , Rhizobium/genetics , Sequence Analysis, DNA , Soil
13.
J Clin Endocrinol Metab ; 106(7): e2613-e2621, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33735391

ABSTRACT

CONTEXT: Bone mineral density (BMD) T-score references may be updated when the peak BMD of the population is unclear and warrants reevaluation. OBJECTIVE: To update BMD T-score references using the peak BMD from the most recent National Health and Nutrition Examination Survey (NHANES) data. METHODS: This cross-sectional study used NHANES data from 2005 to 2014. Non-Hispanic White females between the ages of 10 and 40 years (N = 1549) were our target population to estimate peak BMD (SD). Individuals aged ≥ 50 years (N = 5523) were used to compare the percentages of osteoporosis and low bone mass based on existing and updated BMD T-score references. BMD data within the age at attainment of peak BMD ± 5 years were used to calculate updated BMD T-score references. RESULTS: The updated average of BMD (SD) for diagnosing osteoporosis at the femoral neck and lumbar spine were 0.888 g/cm2 (0.121 g/cm2) and 1.065 g/cm2 (0.122 g/cm2), respectively. The percentages of individuals with osteoporosis at the femoral neck and low bone mass at the femoral neck and lumbar spine based on the updated BMD T-score references were higher than the percentages of people designated with these outcomes under the existing guidelines (P < 0.001). However, we observed the opposite pattern for lumbar spine osteoporosis (P < 0.001). CONCLUSIONS: We calculated new BMD T-score references at the femoral neck and lumbar spine. We found significant differences in the percentages of individuals classified as having osteoporosis and low bone mass between the updated and existing BMD T-score references.


Subject(s)
Absorptiometry, Photon/statistics & numerical data , Bone Density , Osteoporosis/diagnosis , Adolescent , Adult , Child , Cross-Sectional Studies , Female , Femur Neck/diagnostic imaging , Humans , Lumbar Vertebrae/diagnostic imaging , Middle Aged , Nutrition Surveys , Osteoporosis/epidemiology , Reference Values , United States/epidemiology , Young Adult
14.
Open Med (Wars) ; 16(1): 149-155, 2021.
Article in English | MEDLINE | ID: mdl-33585690

ABSTRACT

Hypertension is associated with body mass index (BMI) and cardiovascular and cerebrovascular diseases (CCDs). Whether hypertension modifies the relationship between BMI and CCDs is still unclear. We examined the association between BMI and CCDs and tested whether effect measure modification was present by hypertension. We identified a population-based sample of 3,942 participants in Shuncheng, Fushun, Liaoning, China. Hypertension was defined as any past use of antihypertensive medication or having a measured systolic/diastolic blood pressure ≥130/80 mm Hg. BMI was calculated from measured body weight and body height. Data on diagnosed CCDs were self-reported and validated in the medical records. We used logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between BMI and CCDs. Higher BMI was associated with increased odds of having CCDs (OR = 1.19, 95% CI: 1.07-1.31). This association was significantly modified by hypertension (P for interaction <0.001), with positive associations observed among hypertensive individuals (OR = 1.28, 95% CI: 1.14-1.42). Age, sex, and diabetic status did not modify the relationship between BMI and CCDs (all P for interaction >0.10). Although higher BMI was associated with increased odds of CCDs, the relationship was mainly limited to hypertensive patients.

15.
Nephrol Dial Transplant ; 36(5): 890-901, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33367781

ABSTRACT

BACKGROUND: Patients receiving peritoneal dialysis (PD) endure an ongoing regimen of daily fluid exchanges and are at risk of potentially life-threatening complications and debilitating symptoms that can limit their ability to participate in life activities. The aim of the study was to identify the characteristics, content and psychometric properties of measures for life participation used in research in PD. METHODS: We searched MEDLINE, Embase, PsychInfo, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and the Cochrane Central Register of Controlled Trials from inception to May 2020 for all studies that reported life participation in patients on PD. The characteristics, dimensions of life participation and psychometric properties of these measures were extracted and analyzed. RESULTS: Of the 301 studies included, 17 (6%) were randomized studies and 284 (94%) were nonrandomized studies. Forty-two different measures were used to assess life participation. Of these, 23 (55%) were used in only one study. Fifteen (36%) measures were specifically designed to assess life participation, while 27 (64%) measures assessed broader constructs, such as quality of life, but included questions on life participation. The 36-Item Short Form Health Survey and Kidney Disease Quality of Life Short Form were the most frequently used measures [122 (41%) and 86 (29%) studies, respectively]. Eight (19%) measures had validation data to support their use in patients on PD. CONCLUSIONS: The many measures currently used to assess life participation in patients receiving PD vary in their characteristics, content and validation. Further work to pilot and validate potential measures is required to establish a core patient-reported outcome measure to assess life participation in patients receiving PD.


Subject(s)
Patient Reported Outcome Measures , Adult , Humans , Peritoneal Dialysis/adverse effects , Psychometrics , Quality of Life
16.
Sci Rep ; 10(1): 15502, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968187

ABSTRACT

In vivo and vitro evidence indicates that ornithine and its related metabolic products play a role in tumor development. Whether ornithine is associated with breast cancer in humans is still unclear. We examined the association between circulating ornithine levels and breast cancer in females. This 1:1 age-matched case-control study identified 735 female breast cancer cases and 735 female controls without breast cancer. All cases had a pathological test to ascertain a breast cancer diagnosis. The controls were ascertained using pathologic testing, clinical examinations, and/or other tests. Fasting blood samples were used to measure ornithine levels. The average age for cases and controls were 49.6 years (standard deviation [SD] 8.7 years) and 48.9 years (SD 8.7 years), respectively. Each SD increase in ornithine levels was associated with a 12% reduction of breast cancer risk (adjusted odds ratio [OR] 0.88; 95% confidence interval [CI] 0.79-0.97). The association between ornithine and breast cancer did not differ by pathological stages of diagnosis or tumor grades (all P for trend > 0.1). We observed no effect measure modification by molecular subtypes (P for interaction = 0.889). In conclusion, higher ornithine levels were associated with lower breast cancer risk in females.


Subject(s)
Breast Neoplasms/etiology , Ornithine/blood , Breast Neoplasms/blood , Case-Control Studies , Female , Humans , Middle Aged , Odds Ratio , Risk Factors
17.
J Hazard Mater ; 400: 123298, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947703

ABSTRACT

Hexachlorocyclohexane (HCH) isomers pose potential threats to the environment and to public health due to their persistence and high toxicity. In this study, nanoscale zero-valent iron (nZVI) coupled with microbial degradation by indigenous microorganisms with and without biostimulation was employed to remediate soils highly polluted with HCH. The degradation efficiency of total HCHs in both the "nZVI-only" and "Non-amendment" treatments was approximately 50 %, while in the treatment amended with nZVI and acetate, 85 % of total HCHs was removed. Addition of nZVI and acetate resulted in enrichment of anaerobic microorganisms. The results of quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing revealed that Desulfotomaculum, Dehalobacter, Geobacter, and Desulfuromonas likely contributed to the depletion of HCH isomers. Moreover, some abiotic factors also favored this removal process, including pH, and the generation of iron sulfides as revealed by the result of Mössbauer spectrometer analysis. Our research provides an improved remediation strategy for soils polluted with HCH isomers and an understanding of the synergistic effect of nZVI and indigenous microorganisms.


Subject(s)
Hexachlorocyclohexane , Soil , Anaerobiosis , Iron , RNA, Ribosomal, 16S/genetics
18.
Sci Total Environ ; 746: 140992, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32745849

ABSTRACT

The environmental fate of the recalcitrant organic chlorine insecticide lindane and its removal from contaminated soils are still of great concern. However, the key factors influencing microbial removal of lindane from paddy soils with intermittent flooding and draining remain largely unknown. Here, we conducted laboratory experiments to investigated lindane biodegradation in different layers of typical acidic paddy soils under different water managements and bioremediation strategies, together with the changes of functional bacterial consortium, key genes and metabolic pathways. It was found that under flooded conditions, lindane spiking significantly stimulated the growth of some bacterial genera with potential anaerobic catabolic functions in both top- (0-20 cm depth) and subsoil (20-40 cm depth), leading to the shortest half-life of lindane with 7.6-9.0 d in the topsoil. In contrary, lindane spiking dramatically stimulated the growth of bacterial members with aerobic catabolic functions under drained conditions, exhibiting half-lives of lindane with 85-131 d and 18-23 d in the top- and subsoil, respectively. Overall, biostimulation coupled with flooding management would be the better combination for increased lindane bioremediation. Functional genes involved in lindane degradation and retrieved from metagenomic data further supported the anaerobic and aerobic biodegradation of lindane under flooded and drained conditions, respectively. Moreover, the integrated network analysis suggested water management and organic matter were the primary factors shaped the assembly of functional bacteria in lindane degradation, among which Clostridium and Rhodanobacter were the key anaerobic and aerobic functional genera, respectively. Taken together, our study provides a comprehensive understanding of lindane biodegradation in distinct layers of acidic paddy soils that were combinedly affected by different water managements and bioremediation strategies.


Subject(s)
Hexachlorocyclohexane , Soil Pollutants/analysis , Biodegradation, Environmental , Soil , Soil Microbiology , Water , Water Supply
19.
J Agric Food Chem ; 68(26): 6967-6976, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32530641

ABSTRACT

Dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid; DCPP], an important phenoxyalkanoic acid herbicide (PAAH), is extensively used in the form of racemic mixtures (Rac-DCPP), and the environmental fates of both DCPP enantiomers [(R)-DCPP and (S)-DCPP] mediated by microorganisms are of great concern. In this study, a bacterial strain Sphingopyxis sp. DBS4 was isolated from contaminated soil and was capable of utilizing both (R)-DCPP and (S)-DCPP as the sole carbon source for growth. Strain DBS4 preferentially catabolized (S)-DCPP as compared to (R)-DCPP. The optimal conditions for Rac-DCPP degradation by strain DBS4 were 30 °C and pH 7.0. In addition to Rac-DCPP, other PAAHs such as (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid, 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, and 2,4-dichlorophenoxyacetic acid butyl ester could also be catabolized by strain DBS4. Bioremediation of Rac-DCPP-contaminated soil by inoculation of strain DBS4 exhibited an effective removal of both (R)-DCPP and (S)-DCPP from the soil. Due to its broad substrate spectrum, strain DBS4 showed great potential in the bioremediation of PAAH-contaminated sites.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/analogs & derivatives , Herbicides/metabolism , Sphingomonadaceae/metabolism , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2,4-Dichlorophenoxyacetic Acid/metabolism , Biodegradation, Environmental , Herbicides/chemistry , Stereoisomerism
20.
PeerJ ; 8: e8843, 2020.
Article in English | MEDLINE | ID: mdl-32219041

ABSTRACT

PURPOSE: Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma that is incurable with standard therapies. The use of gene expression analysis has been of interest, recently, to detect biomarkers for cancer. There is a great need for systemic coexpression network analysis of MCL and this study aims to establish a gene coexpression network to forecast key genes related to the pathogenesis and prognosis of MCL. METHODS: The microarray dataset GSE93291 was downloaded from the Gene Expression Omnibus database. We systematically identified coexpression modules using the weighted gene coexpression network analysis method (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were performed on the modules deemed important. The protein-protein interaction networks were constructed and visualized using Cytoscape software on the basis of the STRING website; the hub genes in the top weighted network were identified. Survival data were analyzed using the Kaplan-Meier method and were compared using the log-rank test. RESULTS: Seven coexpression modules consisting of different genes were applied to 5,000 genes in the 121 human MCL samples using WGCNA software. GO and KEGG enrichment analysis identified the blue module as one of the most important modules; the most critical pathways identified were the ribosome, oxidative phosphorylation and proteasome pathways. The hub genes in the top weighted network were regarded as real hub genes (IL2RB, CD3D, RPL26L1, POLR2K, KIF11, CDC20, CCNB1, CCNA2, PUF60, SNRNP70, AKT1 and PRPF40A). Survival analysis revealed that seven genes (KIF11, CDC20, CCNB1, CCNA2, PRPF40A, CD3D and PUF60) were associated with overall survival time (p < 0.05). CONCLUSIONS: The blue module may play a vital role in the pathogenesis of MCL. Five real hub genes (KIF11, CDC20, CCNB1, CCNA2 and PUF60) were identified as potential prognostic biomarkers as well as therapeutic targets with clinical utility for MCL.

SELECTION OF CITATIONS
SEARCH DETAIL
...