Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1287995, 2024.
Article in English | MEDLINE | ID: mdl-38549937

ABSTRACT

Purpose: Patients with advanced prostate cancer (PCa) often develop castration-resistant PCa (CRPC) with poor prognosis. Prognostic information obtained from multiparametric magnetic resonance imaging (mpMRI) and histopathology specimens can be effectively utilized through artificial intelligence (AI) techniques. The objective of this study is to construct an AI-based CRPC progress prediction model by integrating multimodal data. Methods and materials: Data from 399 patients diagnosed with PCa at three medical centers between January 2018 and January 2021 were collected retrospectively. We delineated regions of interest (ROIs) from 3 MRI sequences viz, T2WI, DWI, and ADC and utilized a cropping tool to extract the largest section of each ROI. We selected representative pathological hematoxylin and eosin (H&E) slides for deep-learning model training. A joint combined model nomogram was constructed. ROC curves and calibration curves were plotted to assess the predictive performance and goodness of fit of the model. We generated decision curve analysis (DCA) curves and Kaplan-Meier (KM) survival curves to evaluate the clinical net benefit of the model and its association with progression-free survival (PFS). Results: The AUC of the machine learning (ML) model was 0.755. The best deep learning (DL) model for radiomics and pathomics was the ResNet-50 model, with an AUC of 0.768 and 0.752, respectively. The nomogram graph showed that DL model contributed the most, and the AUC for the combined model was 0.86. The calibration curves and DCA indicate that the combined model had a good calibration ability and net clinical benefit. The KM curve indicated that the model integrating multimodal data can guide patient prognosis and management strategies. Conclusion: The integration of multimodal data effectively improves the prediction of risk for the progression of PCa to CRPC.

2.
Discov Oncol ; 14(1): 133, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37470865

ABSTRACT

PURPOSE: Prostate cancer (PCa) with high Ki-67 expression and high Gleason Scores (GS) tends to have aggressive clinicopathological characteristics and a dismal prognosis. In order to predict the Ki-67 expression status and the GS in PCa, we sought to construct and verify MRI-based radiomics signatures. METHODS AND MATERIALS: We collected T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) images from 170 PCa patients at three institutions and extracted 321 original radiomic features from each image modality. We used support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) logistic regression to select the most informative radiomic features and built predictive models using up sampling and feature selection techniques. Using receiver operating characteristic (ROC) analysis, the discriminating power of this feature was determined. Subsequent decision curve analysis (DCA) assessed the clinical utility of the radiomic features. The Kaplan-Meier (KM) test revealed that the radiomics-predicted Ki-67 expression status and GS were prognostic factors for PCa survival. RESULT: The hypothesized radiomics signature, which included 15 and 9 selected radiomics features, respectively, was significantly correlated with pathological Ki-67 and GS outcomes in both the training and validation datasets. Areas under the curve (AUC) for the developed model were 0.813 (95% CI 0.681,0.930) and 0.793 (95% CI 0.621, 0.929) for the training and validation datasets, respectively, demonstrating discrimination and calibration performance. The model's clinical usefulness was verified using DCA. In both the training and validation sets, high Ki-67 expression and high GS predicted by radiomics using SVM models were substantially linked with poor overall survival (OS). CONCLUSIONS: Both Ki-67 expression status and high GS correlate with PCa patient survival outcomes; therefore, the ability of the SVM classifier-based model to estimate Ki-67 expression status and the Lasso classifier-based model to assess high GS may enhance clinical decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL
...