Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 20: 100927, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144810

ABSTRACT

The effects of freeze-thawed cycles (FTs) and a new antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves (ScAFP) on the structure and physicochemical characteristics of wheat starch were studied. The mechanical breaking exerted by ice crystals on starch granules during FTs gradually deepened, sequentially squeezing the surface (2-6 FTs), amorphous region (8 FTs) and crystalline region (10 FTs) of starch granules. These changes led to reduced thermal stability, increased retrogradation tendency, and weakened gel network structure. The addition of ScAFP retarded the damage of ice crystals on starch granule structure and crystal structure during FTs, and significantly reduced the retrogradation tendency. Compared with native starch, the hardness of freeze-thawed starch without and with added ScAFP after 10 FTs decreased by 17.85% and 9.22%, respectively, indicating ScAFP improved the gel texture properties of freeze-thawed starch. This study provides new strategies for improving the quality of frozen starch-based foods.

3.
Int J Biol Macromol ; 248: 125956, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37487993

ABSTRACT

Polysaccharide-based hydrocolloids (PBHs) are a group of water-soluble polysaccharides with high molecular weight hydrophilic long-chain molecules, which are widely employed in food industry as thickeners, emulsifiers, gelling agents, and stabilizers. Pasta products are considered to be an important source of nutrition for humans, and PBHs show great potential in improving their quality and nutritional value. The hydration of PBHs to form viscous solutions or sols under specific processing conditions is a prerequisite for improving the stability of food systems. In this review, PBHs are classified in a novel way according to food processing conditions, and their gelation mechanisms are summarized. The application of PBHs in pasta products prepared under different processing methods (baking, steaming/cooking, frying, freezing) are reviewed, and the potential mechanism of PBHs in regulating pasta products quality is revealed from the interaction between PBHs and the main components of pasta products (protein, starch, and water). Finally, the safety of PBHs is critically explored, along with future perspectives. This review provides a scientific foundation for the development and specific application of PBHs in pasta products, and provides theoretical support for improving pasta product quality.


Subject(s)
Flour , Food Handling , Humans , Flour/analysis , Starch , Cooking , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...