Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Toxicol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578024

ABSTRACT

The clinical outcomes of osteosarcoma are relatively dismal. As immunotherapy has revolutionized treatment for solid tumors, exploring novel immunotherapy-related therapeutic targets for osteosarcoma is important. In this study, we aimed to establish the connection between RNA modification and immunotherapy in osteosarcoma to identify novel therapeutic targets. An RNA modification-related signature was first developed using weight gene correlation network analysis and a machine-learning algorithm, random forest. The signature's prognostic value, drug prediction, and immune characteristics were analyzed. EIF4G2 from the signature was next identified as a critical immunotherapy determinant. EIF4G2 could also promote tumor proliferation, migration, and M2 macrophage migration by single-cell sequencing analysis and in vitro validation. Our signature and EIF4G2 are expected to provide valuable insights into the clinical management of osteosarcoma.

2.
Adv Healthc Mater ; : e2400968, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591103

ABSTRACT

Tendon injuries are pervasive orthopedic injuries encountered by the general population. Nonetheless, recovery after severe injuries, such as Achilles tendon injury, is limited. Consequently, there is a pressing need to devise interventions, including biomaterials, that foster tendon healing. Regrettably, tissue engineering treatments have faced obstacles in crafting appropriate tissue scaffolds and efficacious nanomedical approaches. To surmount these hurdles, an innovative injectable hydrogel (CP@SiO2), comprising puerarin and chitosan through in situ self-assembly, is pioneered while concurrently delivering mesoporous silica nanoparticles for tendon healing. In this research, CP@SiO2 hydrogel is employed for the treatment of Achilles tendon injuries, conducting extensive in vivo and in vitro experiments to evaluate its efficacy. This reults demonstrates that CP@SiO2 hydrogel enhances the proliferation and differentiation of tendon-derived stem cells, and mitigates inflammation through the modulation of macrophage polarization. Furthermore, using histological and behavioral analyses, it is found that CP@SiO2 hydrogel can improve the histological and biomechanical properties of injured tendons. This findings indicate that this multifaceted injectable CP@SiO2 hydrogel constitutes a suitable bioactive material for tendon repair and presents a promising new strategy for the clinical management of tendon injuries.

3.
Heliyon ; 10(5): e26604, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439884

ABSTRACT

Background: Colorectal cancer (CRC) is the third most prevalent tumor globally. The liver is the most common site for CRC metastasis, and the involvement of the liver is a common cause of death in patients with late-stage CRC. Consequently, mitigating CRC liver metastasis (CRLM) is key to improving CRC prognosis and increasing survival. Exercise has been shown to be an effective method of improving the prognosis of many tumor types. However, the ability of exercise to inhibit CRLM is yet to be thoroughly investigated. Methods: The GSE157600 and GSE97084 datasets were used for analysis. A pan-cancer dataset which was uniformly normalized was downloaded and analyzed from the UCSC database: TCGA, TARGET, GTEx (PANCAN, n = 19,131, G = 60,499). Several advanced bioinformatics analyses were conducted, including single-cell sequencing analysis, correlation algorithm, and prognostic screen. CRC tumor microarray (TMA) as well as cell/animal experiments are used to further validate the results of the analysis. Results: The greatest variability was found in epithelial cells from the tumor group. RPS4X was generally upregulated in all types of CRC, while exercise downregulated RPS4X expression. A lowered expression of RPS4X may prolong tumor survival and reduce CRC metastasis. RPS4X and tumor stemness marker-CD44 were highly positively correlated and knockdown of RPS4X expression reduced tumor stemness both in vitro and in vivo. Conclusion: RPS4X upregulation may enhance CRC stemness and increase the odds of metastasis. Exercise may reduce CRC metastasis through the regulation of RPS4X.

4.
J Clin Invest ; 134(3)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051594

ABSTRACT

Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.


Subject(s)
DNA Methylation , Fractures, Bone , Animals , Humans , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , Fractures, Bone/genetics , Inflammation/genetics , Mice, Transgenic
5.
Int J Biol Sci ; 19(4): 1123-1145, 2023.
Article in English | MEDLINE | ID: mdl-36923940

ABSTRACT

Background: Low-intensity pulsed ultrasound (LIPUS, a form of mechanical stimulation) can promote skeletal muscle functional repair, but a lack of mechanistic understanding of its relationship and tissue regeneration limits progress in this field. We investigated the hypothesis that specific energy levels of LIPUS mediates skeletal muscle regeneration by modulating the inflammatory microenvironment. Methods: To address these gaps, LIPUS irritation was applied in vivo for 5 min at two different intensities (30mW/cm2 and 60mW/cm2) in next 7 consecutive days, and the treatment begun at 24h after air drop-induced contusion injury. In vitro experiments, LIPUS irritation was applied at three different intensities (30mW/cm2, 45mW/cm2, and 60mW/cm2) for 2 times 24h after introduction of LPS in RAW264.7. Then, we comprehensively assessed the functional and histological parameters of skeletal muscle injury in mice and the phenotype shifting in macrophages through molecular biological methods and immunofluorescence analysis both in vivo and in vitro. Results: We reported that LIPUS therapy at intensity of 60mW/cm2 exhibited the most significant differences in functional recovery of contusion-injured muscle in mice. The comprehensive functional tests and histological analysis in vivo indirectly and directly proved the effectiveness of LIPUS for muscle recovery. Through biological methods and immunofluorescence analysis both in vivo and in vitro, we found that this improvement was attributable in part to the clearance of M1 macrophages populations and the increase in M2 subtypes with the change of macrophage-mediated factors. Depletion of macrophages in vivo eliminated the therapeutic effects of LIPUS, indicating that improvement in muscle function was the result of M2-shifted macrophage polarization. Moreover, the M2-inducing effects of LIPUS were proved partially through the WNT pathway by upregulating FZD5 expression and enhancing ß-catenin nuclear translocation in macrophages both in vitro and in vivo. The inhibition and augment of WNT pathway in vitro further verified our results. Conclusion: LIPUS at intensity of 60mW/cm2 could significantly promoted skeletal muscle regeneration through shifting macrophage phenotype from M1 to M2. The ability of LIPUS to direct macrophage polarization may be a beneficial target in the clinical treatment of many injuries and inflammatory diseases.


Subject(s)
Contusions , Wound Healing , Mice , Animals , Muscle, Skeletal/pathology , Ultrasonic Waves , Wnt Signaling Pathway , Inflammation/therapy , Contusions/pathology
7.
Biomolecules ; 13(1)2023 01 07.
Article in English | MEDLINE | ID: mdl-36671508

ABSTRACT

Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1ß, and identified miR-146a-5p as the most responsive miRNA to IL-1ß. miR-146a-5p was also found to be upregulated in human OA cartilage. We further demonstrated that knockdown of miR-146a-5p antagonized IL-1ß-mediated inflammatory responses and IL-1ß-induced catabolism in vitro, and silencing of miR-146a in chondrocytes ameliorated articular cartilage destruction and reduced OA-evoked pain in an injury-induced murine OA model. Moreover, parallel RNA sequencing revealed that differentially expressed genes in response to IL-1ß were enriched in pathways related to inflammatory processes, cartilage matrix homeostasis, and cell metabolism. Bioinformatic analyses of putative miR-146a-5p gene targets and following prediction of protein-protein interactions suggest a functional role of miR-146a-5p in mediating inflammatory processes and regulation of cartilage homeostasis. Our genetic and transcriptomic data define a crucial role of miR-146a-5p in OA pathogenesis and implicate modulation of miR-146a-5p in articular chondrocytes as a potential therapeutic strategy to alleviate OA.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Humans , Mice , Animals , Osteoarthritis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Chondrocytes , Inflammation/metabolism , Cartilage, Articular/pathology , Apoptosis
8.
Front Pharmacol ; 13: 1053137, 2022.
Article in English | MEDLINE | ID: mdl-36467072

ABSTRACT

Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.

9.
Front Bioeng Biotechnol ; 10: 933856, 2022.
Article in English | MEDLINE | ID: mdl-36338135

ABSTRACT

As a vital sign of carcinomas, lymph node metastasis is closely related to poor prognosis due to a lack of identification and effective treatment in the early stage. Nanoscale contrast agents targeting specific tumor antigens are expected to identify tumor metastasis in the early stage and achieve precise treatment. As a biomarker in the early stage of tumor invasion and metastasis, gelsolin (GSN) might be a promising molecular target to identify and screen tumor metastasis through the lymphatic system. Therefore, GSN-targeted paclitaxel-loaded poly(lactic-co-glycolic acid) nanoparticles (GSN-PTX-PLGA NPs) were prepared, and their physicochemical properties, encapsulation efficiency, drug loading, and dissolution were determined. Besides, uptake experiments and the fluorescent imaging system were used to evaluate their targeting capability. The targeting imaging and treatment capacity were also assessed by experiments in vitro and in vivo. The diameter of the GSN-PTX-PLGA NPs was 328.59 ± 3.82 nm. Hca-F cells with GSN-PLGA NPs showed stronger green fluorescence than Hca-P cells. DiI-labeled GSN-PLGA NPs in tumor-bearing mice and isolated organs exhibited more prominent fluorescence aggregation. The imaging of GSN-PLGA NPs was satisfactory in vitro, and the echo intensity gradually increased with increasing concentrations of GSN-PLGA NPs. After treatment with GSN-PTX-PLGA NPs, there was an obvious decrease in tumor volume and lymph node metastasis rate compared to the other groups (p < 0.05). In conclusion, GSN-PTX-PLGA NPs have a remarkable targeting capacity in vivo and in vitro, and they effectively inhibit tumor growth and lymph node metastasis in vivo.

10.
World J Orthop ; 13(6): 544-554, 2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35949705

ABSTRACT

Given that the global population of elderly individuals is expanding and the difficulty of recovery, hip fractures will be a huge challenge and a critical health issue for all of humanity. Although people have spent more time at home during the coronavirus disease 2019 (COVID-19) pandemic, hip fractures show no sign of abating. Extensive studies have shown that patients with hip fracture and COVID-19 have a multifold increase in mortality compared to those uninfected and a more complex clinical condition. At present, no detailed research has systematically analyzed the relationship between these two conditions and proposed a comprehensive solution. This article aims to systematically review the impact of COVID-19 on hip fracture and provide practical suggestions. We found that hip fracture patients with COVID-19 have higher mortality rates and more complicated clinical outcomes. Indirectly, COVID-19 prevents hip fracture patients from receiving regular medical treatment. With regard to the problems we encounter, we provide clinical recommendations based on existing research evidence and a clinical flowchart for the management of hip fracture patients who are COVID-19 positive. Our study will help clinicians adequately prepare in advance when dealing with such patients and optimize treatment decisions.

11.
Small ; 18(34): e2201957, 2022 08.
Article in English | MEDLINE | ID: mdl-35802903

ABSTRACT

Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.


Subject(s)
Exosomes , MicroRNAs , Anti-Inflammatory Agents , Biocompatible Materials , Liposomes , Macrophages , MicroRNAs/genetics , Muscles
12.
World J Stem Cells ; 14(2): 214-218, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35432733

ABSTRACT

Recently, we read with interest the article entitled "Unveiling the Morphogenetic Code: A New Path at the Intersection of Physical Energies and Chemical Signaling". In this paper, the investigation into the systematic and comprehensive bio-effects of physical energies prompted us to reflect on our research. We believe that ultrasound, which possesses a special physical energy, also has a certain positive regulatory effect on macrophages, and we have already obtained some preliminary research results that support our hypothesis.

13.
Int J Nanomedicine ; 17: 61-71, 2022.
Article in English | MEDLINE | ID: mdl-35023919

ABSTRACT

PURPOSE: Current strategies for tumour-induced sentinel lymph node detection and metastasis therapy have limitations. It is essential to identify and provide warnings earlier for tumour metastasis to carry out effective clinical interventions. In addition, traditional cancer chemotherapy encounters drastic limitations due to the nonspecific delivery of antitumour drugs and severe side effects. We aimed to exploit the potential of gelsolin (GSN) monoclonal antibody as a targeting agent and perfluorohexane (PFH) as a phase-transition agent to maximize the cytotoxic effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug controllable release systems for Hca-F cells. METHODS: We co-encapsulated PFH and doxorubicin (DOX) into PLGA nanoparticles (NPs) and further conjugated GSN monoclonal antibody onto the surface of NPs to form GSN-targeted phase transition polymer NPs (GSN-PLGA-PFH-DOX) for both imaging and therapy of tumours and metastatic lymph nodes. To promote and trigger drug release on demand, low-intensity focused ultrasound (LIFU) was applied to achieve a controllable release of the encapsulated drug. RESULTS: GSN-PLGA-PFH-DOX NPs exhibited characteristics such as a narrow size distribution and smooth surface. GSN-PLGA-PFH-DOX NPs could also specifically bind to Hca-F cells and increase the ultrasound contrast agent (UCA) image contrast intensity. GSN-PLGA-PFH-DOX NPs enable GSN-mediated targeting and biotherapeutic effects as well as LIFU-responsive drug release, resulting in synergistic cytotoxic effects in GSN-overexpressing cells in vitro. CONCLUSION: Our work might provide a strategy for the imaging and chemotherapy of primary tumours and their metastases.


Subject(s)
Gelsolin , Nanoparticles , Cell Line, Tumor , Doxorubicin , Drug Delivery Systems , Drug Liberation , Polylactic Acid-Polyglycolic Acid Copolymer
14.
Front Bioeng Biotechnol ; 10: 1080430, 2022.
Article in English | MEDLINE | ID: mdl-36588943

ABSTRACT

Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.

15.
World J Psychiatry ; 11(11): 1129-1146, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34888179

ABSTRACT

BACKGROUND: Hip fracture in the elderly is a worldwide medical problem. New-onset depression after hip fracture has also received attention because of its increasing incidence and negative impact on recovery. AIM: To provide a synthesis of the literature addressing two very important questions arising from postoperative hip fracture depression (PHFD) research: the risk factors and associated clinical outcomes of PHFD, and the optimal options for intervention in PHFD. METHODS: We searched the PubMed, Web of Science, EMBASE, and PsycINFO databases for English papers published from 2000 to 2021. RESULTS: Our results showed that PHFD may result in poor clinical outcomes, such as poor physical function and more medical support. In addition, the risk factors for PHFD were summarized, which made it possible to assess patients preoperatively. Moreover, our work preliminarily suggested that comprehensive care may be the optimal treatment option for PHFDs, while interdisciplinary intervention can also be clinically useful. CONCLUSION: We suggest that clinicians should assess risk factors for PHFDs preoperatively, and future research should further validate current treatment methods in more countries and regions and explore more advanced solutions.

16.
Am J Transl Res ; 13(10): 11758-11763, 2021.
Article in English | MEDLINE | ID: mdl-34786104

ABSTRACT

OBJECTIVE: This study was designed to investigate the clinical value of ultrasonic elastography combined with the Breast Imaging Reporting and Data System (BI-RADS) classification in patients with breast neoplasms. METHODS: A retrospective observational study was conducted on 89 patients with breast neoplasms hospitalized from June 2017 to June 2018. All the enrolled patients had received ultrasound examinations. The diagnostic value of ultrasonic elastography, BI-RADS classification, and the combined diagnosis for breast neoplasms was analyzed. RESULTS: The postoperative pathological examination showed 51 cases of benign lesions and 38 cases of malignant lesions among the 89 cases. The detection of the focal zone revealed 75 benign and 44 malignant lesions. Ultrasonic elastography misdiagnosed 8 malignant lesions as benign and 17 benign lesions as malignant; BI-RADS classification misdiagnosed 7 malignant lesions as benign and 15 benign lesions as malignant; The combined diagnosis misdiagnosed 2 malignant lesions as benign and 4 benign lesions as malignant. The sensitivity of the combined diagnosis was higher than that of ultrasonic elastography (P<0.05). The specificity and positive- and negative predictive values of the combined diagnosis were all higher than those of ultrasonic elastography and BI-RADS classification (all P<0.05). CONCLUSION: Ultrasonic elastography combined with BI-RADS classification has high clinical application value in the diagnosis of breast neoplasms, especially the sensitivity to benign and malignant lesions. And compared with the mono-detection of either ultrasonic elastography or BI-RADS classification, the combined detection yields significantly higher diagnostic accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...