Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ultramicroscopy ; 260: 113950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493522

ABSTRACT

A strong in-plane magnetic field is required for Lorentz transmission electron microscopy (LTEM) to observe the evolution of the magnetic domain structure of materials with high coercivity, particularly for research on rare-earth permanent magnets. However, the maximum field of the present in-situ magnetising holder applied in 200-kV or 300-kV TEM does not exceed 0.1 T. In this study, the reason for the low field was analysed, and the field strength was significantly elevated by reducing the field application area of the field generator. From finite element method calculations and experimental measurements, a 1.5 T in-plane field was achieved by our new holder in a 200-kV TEM, and images with good quality could still be obtained. Using the newly developed holder, the magnetisation process of hot-pressed NdFeB magnets was observed. The in-situ magnetising holder can be used in research on a wide variety of magnetic materials.

2.
Nano Lett ; 24(5): 1587-1593, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38259044

ABSTRACT

Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.

SELECTION OF CITATIONS
SEARCH DETAIL