Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
J Agric Food Chem ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771663

ABSTRACT

Acetylcholinesterase (AChE) stands as a primary target of commercial insecticides, notably organophosphates and carbamates. Despite their widespread use in agricultural and indoor pest control, concerns over their high toxicity and the emergence of resistance have restricted their efficacy. In this study, we conducted high-throughput virtual screening against both wild-type (WT) and resistant Cimex lectularius AChE utilizing a library encompassing 1 270 000 compounds. From this screening, we identified 100 candidate compounds and subsequently assessed their inhibitory effects on purified AChE enzymes. Among these candidates, AE027 emerged as a potent inhibitor against both WT and resistant AChE, exhibiting IC50 values of 10 and 43 µM, respectively. Moreover, the binding of AE027 significantly stabilized AChE, elevating its melting temperature by approximately 7 °C. Through molecular docking and molecular dynamics simulation, we delineated the binding mode of AE027, revealing its interaction with a site adjacent to the catalytic center, which is distinct from known inhibitors, with differing poses observed between WT and resistant AChE. Notably, the resistance mutation F348Y, positioned at a site directly interfacing with AE027, impedes ligand binding through steric hindrance. Furthermore, we evaluated the toxicity and pharmacokinetic properties of AE027 utilizing bioinformatics tools. These findings lay a crucial foundation for the development of a novel generation of insecticides that can combat both WT and resistant pest populations effectively and safely.

2.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691935

ABSTRACT

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Subject(s)
Ferrous Compounds , Nitrobenzenes , Anaerobiosis , Nitrobenzenes/metabolism , Nitrobenzenes/chemistry , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Wastewater/chemistry , Bioreactors
3.
J Am Heart Assoc ; 13(6): e031283, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456416

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is the leading cause of heart failure with a poor prognosis. Recent studies suggest that endothelial to mesenchymal transition (EndMT) may be involved in the pathogenesis and cardiac remodeling during DCM development. EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3) is an extracellular matrix glycoprotein that has been reported to promote EndMT in various diseases. However, the roles of EDIL3 in DCM still remain unclear. METHODS AND RESULTS: A mouse model of DCM and human umbilical vein endothelial cells were used to explore the roles and mechanisms of EDIL3 in DCM. The results indicated that EndMT and EDIL3 were activated in DCM mice. EDIL3 deficiency attenuated cardiac dysfunction and remodeling in DCM mice. EDIL3 knockdown alleviated EndMT by inhibiting USP10 (ubiquitin specific peptidase 10) dependent Smad4 deubiquitination in vivo and in vitro. Recombinant human EDIL3 promoted EndMT via reinforcing deubiquitination of Smad4 in human umbilical vein endothelial cells treated with IL-1ß (interleukin 1ß) and TGF-ß (transforming growth factor beta). Inhibiting USP10 abolished EndMT exacerbated by EDIL3. In addition, recombinant EDIL3 also aggravates doxorubicin-induced EndMT by promoting Smad4 deubiquitination in HUVECs. CONCLUSIONS: Taken together, these results indicate that EDIL3 deficiency attenuated EndMT by inhibiting USP10 dependent Smad4 deubiquitination in DCM mice.


Subject(s)
Cardiomyopathy, Dilated , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Cardiomyopathy, Dilated/metabolism , Cell Adhesion Molecules/metabolism , Discoidins , Epidermal Growth Factor , Epithelial-Mesenchymal Transition , Human Umbilical Vein Endothelial Cells/metabolism , Transforming Growth Factor beta/metabolism , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases/metabolism
4.
MedComm (2020) ; 5(3): e491, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463394

ABSTRACT

Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.

5.
FASEB J ; 38(5): e23513, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421300

ABSTRACT

Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.


Subject(s)
Glycoproteins , Heart Failure , Intercellular Signaling Peptides and Proteins , Protein Deficiency , Animals , Mice , Tumor Suppressor Protein p53/genetics , Cyclin B1 , Ventricular Remodeling , Signal Transduction
7.
Reprod Biol ; 24(1): 100850, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262267

ABSTRACT

Gestational diabetes mellitus (GDM) is a prevalent metabolic disturbance in pregnancy. This article investigated the correlations between serum IGF1R and ATG7 with insulin resistance (IR) in GDM patients. Firstly, 100 GDM patients and 100 healthy pregnant women were selected as study subjects. The levels of serum IGF1, IGF1R, and ATG7 and their correlations with the insulin resistance index homeostasis model assessment of insulin resistance (HOMA-IR) were measured and analyzed by ELISA and Pearson. Additionally, in mouse pancreatic ß cells, IGF1R, ATG7, Beclin-1, and LC3-II/LC3-I levels, cell viability/apoptosis, and insulin level were assessed by western blot, CCK-8, flow cytometry, and ELISA. The GDM group exhibited obviously raised serum IGF1 level and diminished serum IGF1R/ATG7 levels. The IGF1 level was positively correlated with HOMA-IR, while IGF1R/ATG7 levels were negatively correlated with HOMA-IR in GDM patients. Collectively, IGF1R stimulated cell viability, suppressed apoptosis, amplified insulin secretion, and increased ATG7 expression to induce cell autophagy, which could be partially averted by ATG7 silencing.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Insulin-Secreting Cells , Animals , Mice , Pregnancy , Humans , Female , Diabetes, Gestational/metabolism , Insulin Secretion , Insulin-Secreting Cells/chemistry , Insulin-Secreting Cells/metabolism , Blood Glucose/analysis , Blood Glucose/metabolism , Insulin , Receptor, IGF Type 1/metabolism
8.
Eur J Pharm Sci ; 194: 106706, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38244809

ABSTRACT

Cervical cancer is the leading cause of death among gynecological malignant tumors, especially due to the poor prognosis of patients with advanced tumors due to recurrence, metastasis, and chemotherapy resistance. Therefore, exploring new antineoplastic drugs with high efficacy and low toxicity may bring new expectations in patients with cervical cancer. Natural products and their derivatives exert an antitumor activity. Therefore, in this work, combined with network pharmacology analysis and experimental validation, we investigated the anti-cervical cancer activity and molecular mechanism of a new trifluoromethyl quinoline (FKL) derivative in vivo and in vitro. FKL117 inhibited the proliferation of cervical cancer cells in a dose and time-dependent manner, induced apoptosis in HeLa cells, arrested the cell cycle in the G2/M phase, and regulated the expression of the apoptotic and cell cycle-related proteins Bcl-2, Bax, cyclin B1, and CDC2. We used online databases to obtain HDAC1 as one of the possible targets of FKL117 and the target binding and binding affinity were modeled by molecular docking. The results showed that FKL117 formed a hydrogen bond with HDAC1 and had good binding ability. We found that FKL117 targeted to inhibit the expression and function of HDAC1 and increased the acetylation of histone H3 and H4, which was also confirmed in vivo. The migration of HMGB1 from the nucleus to the cytoplasm further verified the above results. In conclusion, our study suggested that FKL117 might be used as a novel candidate for targeting the inhibition of HDAC1 against cervical cancer.


Subject(s)
Quinolines , Uterine Cervical Neoplasms , Female , Humans , Histones/metabolism , Uterine Cervical Neoplasms/drug therapy , HeLa Cells , Acetylation , Molecular Docking Simulation , Cell Line, Tumor , Apoptosis , Quinolines/pharmacology , Quinolines/therapeutic use , Cell Proliferation , Histone Deacetylase 1/metabolism
9.
Circulation ; 149(1): 48-66, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37746718

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Humans , Mice , Animals , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Myocarditis/chemically induced , Myocarditis/metabolism , Programmed Cell Death 1 Receptor , CTLA-4 Antigen , Ligands , Chemokines/metabolism , Macrophages/metabolism , RNA/metabolism
10.
J Hypertens ; 42(3): 420-431, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37937508

ABSTRACT

The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.


Subject(s)
Docosahexaenoic Acids , Hypertension , Mitogen-Activated Protein Kinases , Mice , Rats , Animals , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling/physiology , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism , Cell Proliferation , Angiotensin II/pharmacology , Myocytes, Smooth Muscle , Cells, Cultured
11.
Biochem Pharmacol ; 218: 115912, 2023 12.
Article in English | MEDLINE | ID: mdl-37956894

ABSTRACT

Recent studies have shown that neutrophils play an important role in the development and progression of heart failure. Developmental endothelial locus-1 (DEL-1) is an anti-inflammatory glycoprotein that has been found to have protective effects in various cardiovascular diseases. However, the role of DEL-1 in chronic heart failure is not well understood. In a mouse model of pressure overload-induced non-ischemic cardiac failure, we found that neutrophil infiltration in the heart increased and DEL-1 levels decreased in the early stages of heart failure. DEL-1 deficiency worsened pressure overload-induced cardiac dysfunction and remodeling in mice. Mechanistically, DEL-1 deficiency promotes neutrophil infiltration and the formation of neutrophil extracellular traps (NETs) through the regulation of P38 signaling. In vitro experiments showed that DEL-1 can inhibit P38 signaling and NETs formation in mouse neutrophils in a MAC-1-dependent manner. Depleting neutrophils, inhibiting NETs formation, and inhibiting P38 signaling all reduced the exacerbation of heart failure caused by DEL-1 deletion. Overall, our findings suggest that DEL-1 deficiency worsens pressure overload-induced heart failure by promoting neutrophil infiltration and NETs formation.


Subject(s)
Extracellular Traps , Heart Failure , Animals , Mice , Disease Models, Animal , Extracellular Traps/physiology , Heart Failure/etiology , Neutrophil Infiltration , Neutrophils
13.
Medicine (Baltimore) ; 102(42): e35414, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37861517

ABSTRACT

INTRODUCTION: Giant cell tumor of soft tissue (GCT-ST) is a rare primary soft tissue tumor. GCT-ST mainly occurs in the trunk and extremities. There is no standard treatment for GCT-ST. This paper reports a rare case of primary uterine GCT-ST. CASE PRESENTATION: A 48-year-old female patient underwent a transabdominal subhysterectomy for uterine leiomyoma. Postoperative pathological examination showed GCT-ST with unclear tissue boundary (10.0 × 6.0 × 5.0 cm). A small amount of GCT-ST tissue could be seen on the local edge of the leiomyoma. Residual tumor tissue was found around the uterine cavity. The patient reported persistent lower abdominal distension pain 3 months after the operation. Pelvic and abdominal imaging showed a huge tumor and multiple pelvic and abdominal organ metastasis. No pulmonary metastasis was found. Exploratory surgery revealed widespread metastases in the abdominal and peritoneal cavities, involving both ovaries, right tubal serous membrane, appendix serous membrane, bladder, pelvic peritoneum, and abdominal wall incision. After surgery, the patient had 6 cycles of docetaxel and carboplatin but stopped treatments due to economic reasons. The patient died 3 months later because of multiple organs failure. CONCLUSION: GCT-ST is generally benign but has unpredictable behavior. A massive recurrence with wide invasion is possible after subtotal resection.


Subject(s)
Giant Cell Tumors , Leiomyoma , Soft Tissue Neoplasms , Female , Humans , Middle Aged , Giant Cell Tumors/surgery , Soft Tissue Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Carboplatin
14.
Hypertension ; 80(12): 2650-2664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800344

ABSTRACT

BACKGROUND: Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS: Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS: Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS: RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.


Subject(s)
Hypertension , Peptide Hormones , Animals , Humans , Mice , Angiotensin II , Chemokines , Eicosapentaenoic Acid/pharmacology , Hypertension/chemically induced , Inflammation , Intercellular Signaling Peptides and Proteins , NF-E2-Related Factor 2 , NF-kappa B , Vascular Remodeling
15.
Nat Med ; 29(12): 3100-3110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37884625

ABSTRACT

Immune checkpoint inhibitors (ICI) have transformed the therapeutic landscape in oncology. However, ICI can induce uncommon life-threatening autoimmune T-cell-mediated myotoxicities, including myocarditis and myositis. The thymus plays a critical role in T cell maturation. Here we demonstrate that thymic alterations are associated with increased incidence and severity of ICI myotoxicities. First, using the international pharmacovigilance database VigiBase, the Assistance Publique Hôpitaux de Paris-Sorbonne University data warehouse (Paris, France) and a meta-analysis of clinical trials, we show that ICI treatment of thymic epithelial tumors (TET, and particularly thymoma) was more frequently associated with ICI myotoxicities than other ICI-treated cancers. Second, in an international ICI myocarditis registry, we established that myocarditis occurred earlier after ICI initiation in patients with TET (including active or prior history of TET) compared to other cancers and was more severe in terms of life-threatening arrythmias and concurrent myositis, leading to respiratory muscle failure and death. Lastly, we show that presence of anti-acetylcholine-receptor antibodies (a biological proxy of thymic-associated autoimmunity) was more prevalent in patients with ICI myocarditis than in ICI-treated control patients. Altogether, our results highlight that thymic alterations are associated with incidence and seriousness of ICI myotoxicities. Clinico-radio-biological workup evaluating the thymus may help in predicting ICI myotoxicities.


Subject(s)
Antineoplastic Agents, Immunological , Myocarditis , Myositis , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Myocarditis/chemically induced , Antineoplastic Agents, Immunological/adverse effects , Myotoxicity/drug therapy , Myositis/chemically induced , Myositis/drug therapy , Myositis/pathology , Neoplasms/drug therapy
16.
Front Endocrinol (Lausanne) ; 14: 1221325, 2023.
Article in English | MEDLINE | ID: mdl-37876545

ABSTRACT

Background: Previous animal studies have suggested that air pollution (AP) exposure may be a potential risk factor for obesity; however, there is limited epidemiological evidence available to describe the association of obesity with AP exposure. Methods: A retrospective cross-sectional study was conducted on 11,766 participants across mainland China in 2015. Obesity was assessed using body mass index (BMI), waist circumference (WC), and visceral adiposity index (VAI). The space-time extremely randomized tree (STET) model was used to estimate the concentration of air pollutants, including SO2, NO2, O3, PM1, PM2.5, and PM10, matched to participants' residential addresses. Logistic regression models were employed to estimate the associations of obesity with outdoor AP exposure. Further stratified analysis was conducted to evaluate whether sociodemographics or lifestyles modified the effects. Results: Increased AP exposure was statistically associated with increased odds of obesity. The odds ratio (ORs) and 95% confidence interval (CI) of BMI-defined obesity were 1.21 (1.17, 1.26) for SO2, 1.33 (1.26, 1.40) for NO2, 1.15 (1.10, 1.21) for O3, 1.38 (1.29, 1.48) for PM1, 1.19 (1.15, 1.22) for PM2.5, and 1.11 (1.09, 1.13) for PM10 per 10 µg/m3 increase in concentration. Similar results were found for central obesity. Stratified analyses suggested that elderly participants experienced more adverse effects from all 6 air pollutants than middle-aged participants. Furthermore, notable multiplicative interactions were found between O3 exposure and females as well as second-hand smokers in BMI-defined obesity. Conclusions: This study suggested that outdoor AP exposure had a significant association with the risk of obesity in the middle-aged and elderly Chinese population. Elderly individuals and women may be more vulnerable to AP exposure.


Subject(s)
Air Pollutants , Air Pollution , Aged , Middle Aged , Humans , Adult , Female , Body Mass Index , Obesity, Abdominal/epidemiology , Obesity, Abdominal/etiology , Retrospective Studies , Nitrogen Dioxide/analysis , Cross-Sectional Studies , Adiposity , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Obesity/epidemiology , Obesity/chemically induced , China/epidemiology
17.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37824022

ABSTRACT

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Animals , Mice , Disease Models, Animal , Fibrosis , Inflammation/pathology , Macrophages/metabolism , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocardium/metabolism , Signal Transduction , Transcription Factors/metabolism , Janus Kinase 1/metabolism , STAT1 Transcription Factor/metabolism
18.
PLoS Genet ; 19(9): e1010911, 2023 09.
Article in English | MEDLINE | ID: mdl-37708138

ABSTRACT

Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.


Subject(s)
Arthropods , Tetranychidae , Animals , Proteomics , Xenobiotics , Receptors, Cytoplasmic and Nuclear/genetics , Transcription Factors , Tetranychidae/genetics
19.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37642636

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Animals , Mice , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow Cells/metabolism , Homeostasis
20.
Nurs Open ; 10(10): 6885-6895, 2023 10.
Article in English | MEDLINE | ID: mdl-37469117

ABSTRACT

AIM: The purpose of this study was to provide a comprehensive understanding of the attitudes and experiences of the medical staff regarding the hospital bed-sharing model. DESIGN: The present research was a qualitative study. METHODS: This qualitative study used in-depth individual interviews with 7 doctors, 10 clinical nurses and 3 head nurses, which were then transcribed and analysed thematically. RESULTS: The study identified six overall themes. Issues were raised about the efficient utilization of hospital bed resources, greater challenges for nursing work, adjustment of doctors' work modes, barriers to communication between doctors, nurses, and patients, potential medical risks, and differentiation of patients' medical experience. IMPLICATIONS FOR NURSING MANAGEMENT: Hospital administrators and nurse managers should work together to solve the challenges that medical staff face, including strengthening nursing training, improving medical-nursing collaboration models, standardizing and effective communication strategies, and improving patient experiences.


Subject(s)
Medical Staff, Hospital , Medical Staff , Humans , Qualitative Research , Communication , Hospitals
SELECTION OF CITATIONS
SEARCH DETAIL
...