Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(4): 1701-1719, 2024.
Article in English | MEDLINE | ID: mdl-38389831

ABSTRACT

Human somatic cells can be reprogrammed into neuron cell fate through regulation of a single transcription factor or application of small molecule cocktails. Methods: Here, we report that forskolin efficiently induces the conversion of human somatic cells into induced neurons (FiNs). Results: A large population of neuron-like phenotype cells was observed as early as 24-36 h post-induction. There were >90% TUJ1-, >80% MAP2-, and >80% NEUN-positive neurons at 5 days post-induction. Multiple subtypes of neurons were present among TUJ1-positive cells, including >60% cholinergic, >20% glutamatergic, >10% GABAergic, and >5% dopaminergic neurons. FiNs exhibited typical neural electrophysiological activity in vitro and the ability to survive in vitro and in vivo more than 2 months. Mechanistically, forskolin functions in FiN reprogramming by regulating the cAMP-CREB1-JNK signals, which upregulates cAMP-CREB1 expression and downregulates JNK expression. Conclusion: Overall, our studies identify a safer and efficient single-small-molecule-driven reprogramming approach for induced neuron generation and reveal a novel regulatory mechanism of neuronal cell fate acquisition.


Subject(s)
Cellular Reprogramming , Transcription Factors , Humans , Colforsin/pharmacology , Cell Differentiation/physiology , Transcription Factors/metabolism , Dopaminergic Neurons/metabolism , Cyclic AMP Response Element-Binding Protein
2.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895180

ABSTRACT

Circular RNAs (circRNAs) are a type of non-coding RNA that play a crucial role in the development and lactation of mammary glands in mammals. A total of 107 differentially expressed circRNAs (DE circRNAs) were found, of which 52 were up-regulated and 55 were down-regulated. We also found that DE circRNA host genes were mainly involved in GO terms related to the development process of mammary epithelial cells and KEGG pathways were mostly related to mammary epithelial cells, lactation, and gland development. Protein network analysis found that DE circRNAs can competitively bind to miRNAs as key circRNAs by constructing a circRNA-miRNA-mRNA network. CircRNAs competitively bind to miRNAs (miR-10b-3p, miR-671-5p, chi-miR-200c, chi-miR-378-3p, and chi-miR-30e-5p) involved in goat mammary gland development, mammary epithelial cells, and lactation, affecting the expression of core genes (CDH2, MAPK1, ITGB1, CAMSAP2, and MAPKAPK5). Here, we generated CiMECs and systematically explored the differences in the transcription profile for the first time using whole-transcriptome sequencing. We also analyzed the interaction among mRNA, miRNA, and cirRNA and predicted that circRNA plays an important role in the maintenance of mammary epithelial cells.


Subject(s)
MicroRNAs , RNA, Circular , Female , Animals , RNA, Circular/genetics , Goats/genetics , Goats/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Epithelial Cells/metabolism
3.
Front Genet ; 14: 1189487, 2023.
Article in English | MEDLINE | ID: mdl-37745843

ABSTRACT

Long noncoding RNAs (lncRNAs) were important regulators affecting the cellular reprogramming process. Previous studies from our group have demonstrated that small molecule compounds can induce goat ear fibroblasts to reprogram into mammary epithelial cells with lactation function. In this study, we used lncRNA-Sequencing (lncRNA-seq) to analyze the lncRNA expression profile of cells before and after reprogramming (CK vs. 5i8 d). The results showed that a total of 3,970 candidate differential lncRNAs were detected, 1,170 annotated and 2,800 new lncRNAs. Compared to 0 d cells, 738 lncRNAs were significantly upregulated and 550 were significantly downregulated in 8 d cells. Heat maps of lncrnas and target genes with significant differences showed that the fate of cell lineages changed. Functional enrichment analysis revealed that these differently expressed (DE) lncRNAs target genes were mainly involved in signaling pathways related to reprogramming and mammary gland development, such as the Wnt signaling pathway, PI3K-Akt signaling pathway, arginine and proline metabolism, ECM-receptor interaction, and MAPK signaling pathway. The accuracy of sequencing was verified by real-time fluorescence quantification (RT-qPCR) of lncRNAs and key candidate genes, and it was also demonstrated that the phenotype and genes of the cells were changed. Therefore, this study offers a foundation for explaining the molecular mechanisms of lncRNAs in chemically induced mammary epithelial cells.

4.
Front Cell Dev Biol ; 11: 1194070, 2023.
Article in English | MEDLINE | ID: mdl-37601103

ABSTRACT

Introduction: The plasticity of cell identity allows cellular reprogramming that manipulates the lineage of cells to generate the target cell types, bringing new avenues for disease modeling and autologous tailored cell therapy. Previously, we had already successfully established a technical platform for inducing fibroblast reprogramming to chemically induced mammary epithelial cells (CiMECs) by small-molecule compounds. However, exactly how the molecular mechanism driving the lineage conversion remains unknown. Methods: We employ the RNA-sequencing technology to investigate the transcriptome event during the reprogramming process and reveal the molecular mechanisms for the fate acquisition of mammary lineage. Results: The multi-step reprogramming process first overcomes multiple barriers, including the inhibition of mesenchymal characteristics, pro-inflammatory and cell death signals, and then enters an intermediate plastic state. Subsequently, the hormone and mammary development genes were rapidly activated, leading to the acquisition of the mammary program together with upregulation of the milk protein synthesis signal. Moreover, the gene network analyses reveal the potential relationship between the TGF-ß signaling pathway to mammary lineage activation, and the changes in the expression of these genes may play important roles in coordinating the reprogramming process. Conclusion: Together, these findings provide critical insights into the molecular route and mechanism triggered by small-molecule compounds that induce fibroblast reprogramming into the fate of mammary epithelial cells, and they also laid a foundation for the subsequent research on the development and differentiation of mammary epithelial cells and lactation.

5.
Front Cell Dev Biol ; 11: 1020965, 2023.
Article in English | MEDLINE | ID: mdl-36819108

ABSTRACT

Introduction: The molecular regulation mechanism of fat deposition in bovine and its improvement on beef quality are important research directions in the livestock industry. The research of molecular mechanisms that govern the regulation and differentiation of adipocytes may conduct to understand the mechanism of obesity, lipid disorders, and fat deposition. In the recent decade, small-molecule compounds have been widely used in reprogramming and transdifferentiation fields, which can promote the induction efficiency, replace exogenous genes, or even induce cell fate conversion alone. Furthermore, small-molecule compound induction is expected to be a novel approach to generate new cell types from somatic cells in vitro and in vivo. Methods: In this study, we established rapid chemically induced platform for transdifferentiation of bovine ear fibroblasts into adipocyte-like cells using a small-molecule cocktail (Repsox, VPA, TTNPB). The chemically induced adipocytes (CiADCs) were characterized by lipid staining, qRT-PCR and WB. Bovine natural adipocytes were used as positive control, and the expression of adipocyte-related marker genes in CiADCs were analyzed. Moreover, RNA-Seq explore the mechanism of RVB in the regulation of Bovine adipocyte transdifferentiation. Results: In this study, the chemically induced adipocytes (CiADCs) could be identified as early as day 6. The CiADCs appeared to be circular and rich of lipid droplets. The adipocyte-specific genes of LPL, PPARγ, IGF1, GPD1, C/EBPδ, ADIPOQ, PCK2, FAS, C/EBPß, PPARGC1A, C/EBPα, and CFD were detected to be significantly upregulated in both CiADCs and natural adipocytes. Western blot analysis also confirmed the increase C/EBPα and PPARγ protein level in induced adipocytes (CiADCs-6d) treated with RVB. In addition, we also found that the signaling pathways (PPAR signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, MAPK signaling pathway, and ECM-receptor interaction) regulated by the DEGs played a vital role in adipogenesis. Discussion: In the present study, a combination of small-molecule compounds RVB was used to transdifferentiate bovine ear fibroblasts into the chemically-induced adipocyte cells (CiADCs) that have a large number of lipid droplets. Importantly, the small-molecule cocktail significantly shortened the reprogramming turnaround time. The morphology of CiADCs is close to the "ring type" of natural differentiated adipocytes on sixth day. And, the CiADCs showed similar adipocyte-specific gene expression patterns to natural adipocytes. Furthermore, RVB increased protein expression of PPARγ and C/EBPα in the chemically-induced adipocytes (CiADCs-6d). Our findings reveal that the signaling pathways of C/EBPα and PPARγ play pivotal roles in this transdifferentiation process. In addition, we also found that the signaling pathways (PPAR signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, MAPK signaling pathway, and ECM-receptor interaction) regulated by the DEGs played a vital role in adipogenesis. In general, this study provides valuable evidence to deepen our understanding of the molecular mechanism of small molecule cocktails in regulating adipogenesis.

6.
Biomaterials ; 277: 121075, 2021 10.
Article in English | MEDLINE | ID: mdl-34428734

ABSTRACT

In somatic cell reprogramming, cells must escape the somatic cell-specific gene expression program to adopt other cell fates. Here, in vitro chemical induction with RepSox generated chemically induced mammary epithelial cells (CiMECs) with milk secreting functions from goat ear fibroblasts (GEFs). Transplanted CiMECs regenerated the normal mammary gland structure with milk-secreting functions in nude mice. Single-cell RNA sequencing revealed that during the reprogramming process, GEFs may sequentially undergo embryonic ectoderm (EE)-like and different MEC developmental states and finally achieve milk secreting functions, bypassing the pluripotent state. Mechanistically, Smad3 upregulation induced by transforming growth factor ß (TGFß) receptor 1 (TGFßR1) downregulation led to GEF reprogramming into CiMECs without other reprogramming factors. The TGFßR1-Smad3 regulatory effects will provide new insight into the TGFß signaling pathway regulation of somatic cell reprogramming. These findings suggest an innovative strategy for autogenous cell therapy for mammary gland defects and the production of transgenic mammary gland bioreactors.


Subject(s)
Goats , Mammary Glands, Animal , Animals , Cell- and Tissue-Based Therapy , Epithelial Cells , Mice , Mice, Nude
7.
Biochem Biophys Res Commun ; 573: 55-61, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34388455

ABSTRACT

Mammary epithelial cells are the only cells in the mammary glands that are capable of lactation and they are ideal for studying cellular and molecular biology mechanisms during growth, development and lactation of the mammary glands. The limiting factors in most of the currently available mammary epithelial cells are low cell viability, transgenerational efficiency and lactation function that renders them unsuitable for subsequent studies on mammary gland's cellular and lactation mechanisms and utilizing them as bioreactors. Hence, new methods are required to obtain mammary epithelial cells with high transgenerational efficiency and lactation function. In this study, transdifferentiation of goat ear fibroblasts (GEFs) into goat mammary epithelial cells (CiMECs) was induced in only eight days by five small molecule compounds, including 500 µg/mL VPA, 10 µM Tranylcypromine, 10 µM Forskolin, 1 µM TTNPB, 10 µM RepSox. Morphological observation, marker genes comparison, specific antigen expression and comparison of gene expression levels by transcriptome sequencing between the two types of cells that led to the primary deduction that CiMECs have similar biological properties to goat mammary epithelial cells (GMECs) and comparatively more lactation capacity. Therefore, we establish a novel reprogramming route to convert fibroblasts into CiMECs under fully chemically conditions. This study is expected to provide an in vitro platform for understanding cellular mechanisms such as mammary epithelial cells' fate determination and developmental differentiation, and also to find a new way to obtain a large number of functional mammary epithelial cells in vitro.


Subject(s)
Benzoates/pharmacology , Colforsin/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Retinoids/pharmacology , Small Molecule Libraries/pharmacology , Tranylcypromine/pharmacology , Valproic Acid/pharmacology , Animals , Benzoates/chemistry , Cell Transdifferentiation/drug effects , Colforsin/chemistry , Dose-Response Relationship, Drug , Ear , Epithelial Cells/drug effects , Female , Fibroblasts/drug effects , Goats , Mammary Glands, Animal/drug effects , Pyrazoles/chemistry , Pyridines/chemistry , Retinoids/chemistry , Small Molecule Libraries/chemistry , Tranylcypromine/chemistry , Valproic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...