Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1139950, 2023.
Article in English | MEDLINE | ID: mdl-36910186

ABSTRACT

Microbial distribution patterns are the result of a combination of biotic and abiotic factors, which are the core issues in microbial ecology research. To better understand the biogeographic pattern of bacteria in water environments from the Bohai Sea to the northern Yellow Sea, the effects of environmental factors, and spatial distance on the structure of bacterial communities in marine water were investigated using high-throughput sequencing technology based on 16S rRNA genes. The results showed that Proteobacteria, Bacteroidetes, Actinobacteri, Desulfobacterota, and Bdellovibrionota were the dominant phyla in the study area. A clear spatial pattern in the bacterial community was observed, and environmental factors, including salinity, nutrient concentration, carbon content, total phosphorus, dissolved oxygen, and seawater turbidity emerged as the central environmental factors regulating the variation in bacterial communities. In addition, the study provides direct evidence of the existence of dispersal limitation in this strongly connected marine ecological system. Therefore, these results revealed that the variation in bacterial community characteristics was attributed to environmental selection, accompanied by the regulation of stochastic diffusion. The network analysis demonstrated a nonrandom co-occurrence pattern in the microbial communities with distinct spatial distribution characteristics. It is implied that the biogeography patterns of bacterial community may also be associated with the characteristics of co-occurrence characterize among bacterial species. Furthermore, the PICRUSt analysis indicated a clear spatial distribution of functional characteristics in bacterial communities. This functional variation was significantly modulated by the environmental characteristics of seawater but uncoupled from the taxonomic characteristics of bacterial communities (e.g., diversity characteristics, community structure, and co-occurrence relationships). Together, this findings represent a significant advance in linking seawater to the mechanisms underlying bacterial biogeographic patterns and community assembly, co-occurrence patterns, and ecological functions, providing new insights for identifying the microbial ecology as well as the biogeochemical cycle in the marine environment.

2.
Front Microbiol ; 12: 767174, 2021.
Article in English | MEDLINE | ID: mdl-34975794

ABSTRACT

Ocean acidification is one of many stressors that coral reef ecosystems are currently contending with. Thus, understanding the response of key symbiotic microbes to ocean acidification is of great significance for understanding the adaptation mechanism and development trend of coral holobionts. Here, high-throughput sequencing technology was employed to investigate the coral-associated bacteria and Symbiodiniaceae of the ecologically important coral Acropora valida exposed to different pH gradients. After 30 days of acclimatization, we set four acidification gradients (pH 8.2, 7.8, 7.4, and 7.2, respectively), and each pH condition was applied for 10 days, with the whole experiment lasting for 70 days. Although the Symbiodiniaceae density decreased significantly, the coral did not appear to be bleached, and the real-time photosynthetic rate did not change significantly, indicating that A. valida has strong tolerance to acidification. Moreover, the Symbiodiniaceae community composition was hardly affected by ocean acidification, with the C1 subclade (Cladocopium goreaui) being dominant among the Symbiodiniaceae dominant types. The relative abundance of the Symbiodiniaceae background types was significantly higher at pH 7.2, indicating that ocean acidification might increase the stability of the community composition by regulating the Symbiodiniaceae rare biosphere. Furthermore, the stable symbiosis between the C1 subclade and coral host may contribute to the stability of the real-time photosynthetic efficiency. Finally, concerning the coral-associated bacteria, the stable symbiosis between Endozoicomonas and coral host is likely to help them adapt to ocean acidification. The significant increase in the relative abundance of Cyanobacteria at pH 7.2 may also compensate for the photosynthesis efficiency of a coral holobiont. In summary, this study suggests that the combined response of key symbiotic microbes helps the whole coral host resist the threats of ocean acidification.

3.
Int J Food Microbiol ; 305: 108254, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31238194

ABSTRACT

Pathogens in viable but nonculturable (VBNC) state can escape traditional detection methods based on culturable ability, thus bringing risks to food safety and human health. Considering Staphylococcus aureus as a kind of primary foodborne pathogen, this study attempted to investigate whether citric acid, a food additive commonly used, can force S. aureus into VBNC state along with low temperature. Treated with citric acid solution (pH 4.0) at 4 °C, S. aureus was confirmed to enter into VBNC state after induction for 18 days. Meanwhile, resuscitation was achieved in culture medium rather than in nutrition-free saline solution. In VBNC cells, ATP concentration still maintained at a high level, as about two-thirds of exponential-phase cells. For survival, intracellular structure of VBNC cells changed remarkably, including irregular cell shape, denser cytoplasm, space between cell wall and cell membrane, and decreased density of nuclear region. Notably, resistance of VBNC cells to simulated gastric fluid improved when compared with exponential-phase cells. What are noted above suggests that VBNC state adopted by S. aureus might be a survival strategy to the adverse environment (acidity stress and low temperature). In conclusion, our study sounds an alarm for the safety of citric acid-containing foods.


Subject(s)
Citric Acid/pharmacology , Staphylococcus aureus/drug effects , Cold Temperature , Culture Media/chemistry , Culture Media/metabolism , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...