Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(6): 851-866.e7, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37192616

ABSTRACT

The emergence of the three germ layers and the lineage-specific precursor cells orchestrating organogenesis represent fundamental milestones during early embryonic development. We analyzed the transcriptional profiles of over 400,000 cells from 14 human samples collected from post-conceptional weeks (PCW) 3 to 12 to delineate the dynamic molecular and cellular landscape of early gastrulation and nervous system development. We described the diversification of cell types, the spatial patterning of neural tube cells, and the signaling pathways likely involved in transforming epiblast cells into neuroepithelial cells and then into radial glia. We resolved 24 clusters of radial glial cells along the neural tube and outlined differentiation trajectories for the main classes of neurons. Lastly, we identified conserved and distinctive features across species by comparing early embryonic single-cell transcriptomic profiles between humans and mice. This comprehensive atlas sheds light on the molecular mechanisms underlying gastrulation and early human brain development.


Subject(s)
Gastrulation , Germ Layers , Humans , Mice , Animals , Gastrulation/genetics , Cell Differentiation , Organogenesis , Brain
2.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35132995

ABSTRACT

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Subject(s)
Interneurons/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Animals , Cell Cycle/genetics , Cell Lineage/genetics , Cells, Cultured , Female , Gene Knockout Techniques , Lateral Ventricles/embryology , Male , Mice , Mice, Knockout , Neurogenesis/genetics , Olfactory Bulb/embryology , Oligodendrocyte Transcription Factor 2/genetics , Signal Transduction/genetics , Transcriptome/genetics
3.
Dev Biol ; 476: 137-147, 2021 08.
Article in English | MEDLINE | ID: mdl-33775695

ABSTRACT

The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.


Subject(s)
Cell Differentiation/physiology , MAP Kinase Signaling System/physiology , Telencephalon/metabolism , Animals , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Ganglia/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , MAP Kinase Kinase 1/metabolism , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neurogenesis/physiology , Neuroglia/metabolism , Neurons/metabolism , SOXE Transcription Factors/genetics , Telencephalon/embryology , Telencephalon/physiology , Transcription Factors/metabolism
4.
Genes Dev ; 35(1-2): 157-174, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33334823

ABSTRACT

How homeodomain proteins gain sufficient specificity to control different cell fates has been a long-standing problem in developmental biology. The conserved Gsx homeodomain proteins regulate specific aspects of neural development in animals from flies to mammals, and yet they belong to a large transcription factor family that bind nearly identical DNA sequences in vitro. Here, we show that the mouse and fly Gsx factors unexpectedly gain DNA binding specificity by forming cooperative homodimers on precisely spaced and oriented DNA sites. High-resolution genomic binding assays revealed that Gsx2 binds both monomer and homodimer sites in the developing mouse ventral telencephalon. Importantly, reporter assays showed that Gsx2 mediates opposing outcomes in a DNA binding site-dependent manner: Monomer Gsx2 binding represses transcription, whereas homodimer binding stimulates gene expression. In Drosophila, the Gsx homolog, Ind, similarly represses or stimulates transcription in a site-dependent manner via an autoregulatory enhancer containing a combination of monomer and homodimer sites. Integrating these findings, we test a model showing how the homodimer to monomer site ratio and the Gsx protein levels defines gene up-regulation versus down-regulation. Altogether, these data serve as a new paradigm for how cooperative homeodomain transcription factor binding can increase target specificity and alter regulatory outcomes.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/embryology , Drosophila/genetics , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/metabolism , Animals , Drosophila Proteins/genetics , Genome/genetics , Genome-Wide Association Study , Homeodomain Proteins/genetics , Mice , Protein Binding , Telencephalon/embryology
5.
Development ; 147(7)2020 04 10.
Article in English | MEDLINE | ID: mdl-32122989

ABSTRACT

The Gsx2 homeodomain transcription factor promotes neural progenitor identity in the lateral ganglionic eminence (LGE), despite upregulating the neurogenic factor Ascl1. How this balance in maturation is maintained is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in subapical progenitors that have unique transcriptional signatures in LGE ventricular zone (VZ) cells. Moreover, whereas Ascl1 misexpression promotes neurogenesis in dorsal telencephalic progenitors, the co-expression of Gsx2 with Ascl1 inhibits neurogenesis. Using luciferase assays, we found that Gsx2 reduces the ability of Ascl1 to activate gene expression in a dose-dependent and DNA binding-independent manner. Furthermore, Gsx2 physically interacts with the basic helix-loop-helix (bHLH) domain of Ascl1, and DNA-binding assays demonstrated that this interaction interferes with the ability of Ascl1 to bind DNA. Finally, we modified a proximity ligation assay for tissue sections and found that Ascl1-Gsx2 interactions are enriched within LGE VZ progenitors, whereas Ascl1-Tcf3 (E-protein) interactions predominate in the subventricular zone. Thus, Gsx2 contributes to the balance between progenitor maintenance and neurogenesis by physically interacting with Ascl1, interfering with its DNA binding and limiting neurogenesis within LGE progenitors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/embryology , Cell Proliferation , Homeodomain Proteins/metabolism , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Brain/metabolism , Cell Proliferation/genetics , Cells, Cultured , Drosophila , Embryo, Mammalian , Female , Ganglia/cytology , Ganglia/embryology , Homeodomain Proteins/genetics , Homeostasis/genetics , Male , Mice , Mice, Transgenic , Protein Binding , Telencephalon/cytology , Telencephalon/embryology
6.
J Neurosci ; 38(42): 9105-9121, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30143575

ABSTRACT

Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5 Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2.


Subject(s)
Homeodomain Proteins/physiology , Neural Stem Cells/physiology , Neurons/physiology , Telencephalon/embryology , Transcription Factors/physiology , Animals , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Neurons/metabolism , Telencephalon/metabolism , Transcription Factors/genetics
7.
Neural Dev ; 12(1): 13, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28814342

ABSTRACT

BACKGROUND: Olfactory bulb (OB) interneurons are known to represent diverse neuronal subtypes, which are thought to originate from a number of telencephalic regions including the embryonic dorsal lateral ganglionic eminence (dLGE) and septum. These cells migrate rostrally toward the OB, where they then radially migrate to populate different OB layers including the granule cell layer (GCL) and the outer glomerular layer (GL). Although previous studies have attempted to investigate regional contributions to OB interneuron diversity, few genetic tools have been used to address this question at embryonic time points when the earliest populations are specified. METHODS: In this study, we utilized Zic3-lacZ and Gsx2e-CIE transgenic mice as genetic fate-mapping tools to study OB interneuron contributions derived from septum and LGE, respectively. Moreover, to address the regional (i.e. septal) requirements of the homeobox gene Gsx2 for OB interneuron diversity, we conditionally inactivated Gsx2 in the septum, leaving it largely intact in the dLGE, by recombining the Gsx2 floxed allele using Olig2 Cre/+ mice. RESULTS: Our fate mapping studies demonstrated that the dLGE and septum gave rise to OB interneuron subtypes differently. Notably, the embryonic septum was found to give rise largely to the calretinin+ (CR+) GL subtype, while the dLGE was more diverse, generating all major GL subpopulations as well as many GCL interneurons. Moreover, Gsx2 conditional mutants (cKOs), with septum but not dLGE recombination, showed impaired generation of CR+ interneurons within the OB GL. These Gsx2 cKOs exhibited reduced proliferation within the septal subventricular zone (SVZ), which correlated well with the reduced number of CR+ interneurons observed. CONCLUSIONS: Our findings indicate that the septum and LGE contribute differently to OB interneuron diversity. While the dLGE provides a wide range of OB interneuron subtypes, the septum is more restricted in its contribution to the CR+ subtype. Gsx2 is required in septal progenitors for the correct expansion of SVZ progenitors specified toward the CR+ subtype. Finally, the septum has been suggested to be the exclusive source of CR+ interneurons in postnatal studies. Our results here demonstrate that dLGE progenitors in the embryo also contribute to this OB neuronal subtype.


Subject(s)
Homeodomain Proteins/genetics , Interneurons/cytology , Neurogenesis/physiology , Olfactory Bulb/embryology , Septum of Brain/embryology , Animals , Cell Differentiation/physiology , Embryo, Mammalian , Mice , Mice, Transgenic , Neural Stem Cells/cytology
8.
Genesis ; 54(10): 542-549, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27618396

ABSTRACT

In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior-posterior neuraxis. By crossing this transgenic line with the RosatdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE.


Subject(s)
Ganglion Cysts/genetics , Green Fluorescent Proteins/genetics , Homeodomain Proteins/genetics , Telencephalon/growth & development , Amygdala/growth & development , Animals , Ganglion Cysts/pathology , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/biosynthesis , Integrases/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Olfactory Bulb/growth & development , Telencephalon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...