Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411947

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Diarrhea/veterinary , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/metabolism , Virus Replication
2.
RSC Adv ; 14(2): 1141-1149, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174246

ABSTRACT

Antibiotics in aquatic environments present a serious threat to the ecological environment and human health. Activation of carbon-catalyzed persulfate is a prospective approach for oxidizing antibiotics. There is a pressing need for inexpensive carbon catalysts of high quality. In this study, biochar (BC) modified by Fe, Mn and Fe@Mn was employed to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) in water. The surface of Fe@Mn BC had a dense, stalactite-like morphology comprising a square chassis that was elliptical. The catalyst Fe@Mn-BC possessed the optimal degradation effect (99%) on CBZ at 100 min. Electron paramagnetic resonance spectroscopy and the quenching spectrum suggested that ˙O2- and 1O2 contributed to CBZ degradation.

3.
J Virol ; 97(11): e0147023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37882521

ABSTRACT

IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.


Subject(s)
Coronavirus Infections , Coronavirus Nucleocapsid Proteins , Deltacoronavirus , Interferon Type I , Mitochondrial Proteins , Phosphoprotein Phosphatases , Proteolysis , Swine Diseases , Swine , Virus Replication , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Interferon Type I/immunology , Signal Transduction , Swine/virology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Virus Replication/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Deltacoronavirus/immunology , Deltacoronavirus/metabolism , Phosphoprotein Phosphatases/metabolism , Mitochondrial Proteins/metabolism , Down-Regulation , Immune Evasion , RNA-Binding Proteins/metabolism
4.
Vet Microbiol ; 284: 109844, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37572396

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute, highly infectious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which seriously endangers the healthy development of the pig industry. PEDV N protein is the most abundant viral structural protein, which can be combined with viral genomic RNA to form ribonucleoprotein complexes, thereby participating in the transcription and replication of the virus. However, how PEDV hijacks the host transcription translation system to promote viral proliferation remains unclear. In this study, we found that there is an interaction between PEDV N, polyadenylate-binding protein cytoplasmic 1 (PABPC1) and eukaryotic initiation factor 4F (eIF4F) proteins through coimmunoprecipitation, GST pulldown and fluorescence microscopy experiments. PABPC1 could bind to the poly(A) tail of the mRNA, and eIF4F could bind to the 5' end cap structure of the mRNA, so the interaction of PABPC1 and eIF4F could facilitate mRNA forming a circular shape to promote translation to the proteins. To further explore the effect of N protein capture protein translation element PABPC1 and eIF4F on PEDV replication, we overexpressed PABPC1, eIF4F (containing eIF4A, eIF4E and eIF4G) separately on Vero cells and LLC-PK1 cells, and we found that the PABPC1 and eIF4F protein could promote PEDV replication. Taken together, our data suggested that PEDV N protein promoted cyclization of viral mRNA carried by N protein through binding with PABPC1 and eIF4F proteins, thus promoting viral transcription and facilitating viral replication.


Subject(s)
Eukaryotic Initiation Factor-4F , Porcine epidemic diarrhea virus , Chlorocebus aethiops , Animals , Swine , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , Vero Cells , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Virus Replication , RNA-Binding Proteins/metabolism , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism
5.
J Biol Chem ; 299(8): 104987, 2023 08.
Article in English | MEDLINE | ID: mdl-37392846

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), is crucial for controlling RNA metabolism and biological processes. The present work focused on exploring the effect of PTBP1 on PEDV replication. PTBP1 was upregulated during PEDV infection. The PEDV nucleocapsid (N) protein was degraded through the autophagic and proteasomal degradation pathways. Moreover, PTBP1 recruits MARCH8 (an E3 ubiquitin ligase) and NDP52 (a cargo receptor) for N protein catalysis and degradation through selective autophagy. Furthermore, PTBP1 induces the host innate antiviral response via upregulating the expression of MyD88, which then regulates TNF receptor-associated factor 3/ TNF receptor-associated factor 6 expression and induces the phosphorylation of TBK1 and IFN regulatory factor 3. These processes activate the type Ⅰ IFN signaling pathway to antagonize PEDV replication. Collectively, this work illustrates a new mechanism related to PTBP1-induced viral restriction, where PTBP1 degrades the viral N protein and induces type Ⅰ IFN production to suppress PEDV replication.


Subject(s)
Coronavirus Infections , Interferon Type I , Polypyrimidine Tract-Binding Protein , Porcine epidemic diarrhea virus , Proteolysis , Swine Diseases , Virus Replication , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/veterinary , Interferon Type I/metabolism , Porcine epidemic diarrhea virus/physiology , Signal Transduction , Swine , Swine Diseases/genetics , Swine Diseases/virology , Vero Cells , Polypyrimidine Tract-Binding Protein/metabolism
6.
Polymers (Basel) ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111986

ABSTRACT

BaFe12O19-polypyrrolenanocomposites were prepared via the in situ chemical oxidative polymerization of pyrrole monomers in the presence of BaFe12O19 powder, with ammonium persulfate as an oxidant and sodium dodecyl benzene sulfonate as a dopant. X-ray diffraction measurements and Fourier-transform infrared spectroscopy indicated that there were no chemical interactions between BaFe12O19 and polypyrrole. In addition, scanning electron microscopy showed that the composites exhibited a core-shell structure. Subsequently, the prepared nanocomposite was used as a filler to prepare a coating suitable for ultraviolet curing. The performance of the coating was investigated by evaluating its hardness, adhesion, absorbance, and resistance to acids and alkalis. Importantly, the addition of BaFe12O19-polypyrrole nanocomposites not only improved the coating hardness and adhesion but also produced a coating with a good microwave absorption performance. The results suggested that BaFe12O19/PPy composite has a lower reflection loss peak and a larger effective bandwidth at the X band when the proportion of the absorbent sample is 5-7%, when the absorption performance is the best. The reflection loss is in the range of 8.88-10.92 GHz below -10 dB.

7.
Autophagy ; 19(8): 2338-2352, 2023 08.
Article in English | MEDLINE | ID: mdl-36861818

ABSTRACT

Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. The protein degradation role of autophagy has been widely used to control viral infection at multiple levels. In the ongoing evolutionary arms race, viruses have developed various ways to hijack and subvert autophagy in favor of its replication. It is still unclear exactly how autophagy affects or inhibits viruses. In this study, we have found a novel host restriction factor, HNRNPA1, that could inhibit PEDV replication by degrading viral nucleocapsid (N) protein. The restriction factor activates the HNRNPA1-MARCHF8/MARCH8-CALCOCO2/NDP52-autophagosome pathway with the help of transcription factor EGR1 targeting the HNRNPA1 promoter. HNRNPA1 could also promote the expression of IFN to facilitate the host antiviral defense response for antagonizing PEDV infection through RIGI protein interaction. During viral replication, we found that PEDV can, in contrast, degrade the host antiviral proteins HNRNPA1 and others (FUBP3, HNRNPK, PTBP1, and TARDBP) through its N protein through the autophagy pathway. These results reveal the dual function of selective autophagy in PEDV N and host proteins, which could promote the ubiquitination of viral particles and host antiviral proteins and degradation both of the proteins to regulate the relationship between virus infection and host innate immunity.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; Baf A1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; Co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; GPI: glycosyl-phosphatidylinositol; hpi: hours post infection; MARCHF8/MARCH8: membrane-associated ring-CH-type finger 8; MOI: multiplicity of infection; N protein: nucleocapsid protein; PEDV: porcine epidemic diarrhea virus; siRNA: small interfering RNA; TCID50: 50% tissue culture infectious doses.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Macroautophagy , Autophagy , Antiviral Agents , Nucleocapsid Proteins
8.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985970

ABSTRACT

In the process of using photocatalysts to treat tetracycline (TC) wastewater, the degradation efficiency of soybean powder carbon material (SPC) can be improved by loading it with cerium oxide (CeO2). In this study, firstly, SPC was modified by phytic acid. Then, the CeO2 was deposited on modified SPC using the self-assembly method. Catalyzed cerium (III) nitrate hexahydrate (CeH3NO4) was treated with alkali and calcined at 600 °C under nitrogen. XRD, XPS, SEM, EDS, UV-VIS /DRS, FTIR, PL and N2 adsorption-desorption methods were used to characterize the crystal structure, chemical composition, morphology, surface physical and chemical properties. The effects of catalyst dosage, monomer contrast, pH value and co-existing anions on TC oxidation degradation were investigated, and the reaction mechanism of a 600 Ce-SPC photocatalytic reaction system was discussed. The results show that the 600 Ce-SPC composite presents uneven gully morphology, which is similar to the natural "briquettes". The degradation efficiency of 600 Ce-SPC reached about 99% at 60 min under light irradiation when the optimal catalyst dosage and pH were 20 mg and 7. Meanwhile, the reusability of the 600 Ce-SPC samples showed good stability and catalytic activity after four cycles.

9.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677940

ABSTRACT

Photocatalysis is a hopeful technology to solve various environmental problems, but it is still a technical task to produce large-scale photocatalysts in a simple and sustainable way. Here, nano-flower ß-Bi2O3/TiO2 composites were prepared via a facile solvothermal method, and the photocatalytic performances of ß-Bi2O3/TiO2 composites with different Bi/Ti molar ratios were studied. The nano-flower Bi2O3/TiO2 composites were studied by SEM, XRD, XPS, BET, and PL. The PL result proved that the construction of staggered heterojunction enhanced the separation efficiency of carriers. The degradation RhB was applied to study the photocatalytic performances of prepared materials. The results showed that the degradation efficiency of RhB increased from 61.2% to 99.6% when the molar ratio of Bi/Ti was 2.1%. It is a mesoporous approach to enhance photocatalytic properties by forming heterojunction in Bi2O3/TiO2 composites, which increases the separation efficiency of the generated carriers and improves photocatalytic properties. The photoactivity of the Bi2O3/TiO2 has no evident changes after the fifth recovery, indicating that the Bi2O3/TiO2 composite has distinguished stability.


Subject(s)
Bismuth , Titanium , Catalysis
10.
J Gastroenterol Hepatol ; 38(4): 598-608, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36541632

ABSTRACT

BACKGROUND AND AIM: Immune-mediated neuroinflammation has been proposed to underlie the loss of lower esophageal sphincter (LES) myenteric neurons in achalasia. However, the immune status and key pathogenic immune subpopulations remain unclear. This study aims to evaluate the inflammatory status of patients with achalasia and their correlation with clinical characteristics, and further explore the key pathogenic subpopulations. METHODS: We investigated the complete blood cell count and inflammatory markers in a large population of patients with achalasia (n = 341) and healthy controls (n = 80). The subpopulations of lymphocytes were analyzed by flow cytometry. Immunofluorescence was used to determine immune cell infiltration in the LES. Transcriptome changes of the key subpopulation were determined by RNA sequencing analysis. RESULTS: NLR, MLR, CRP, globulin, IL-6 and IL-10 were significantly elevated in patients with achalasia. MLR and globulin were positively correlated with disease duration. The absolute count and percentage of CD8+ T cells in peripheral blood and its infiltration around ganglion in the LES were significantly increased in achalasia. Transcriptome analysis indicated that CD8+ T cells were activated and proliferative. In addition to multiple inflammatory pathways, regulation of neuroinflammatory response pathway was also significantly up-regulated in achalasia. GSEA analysis revealed a close association with autoimmune diseases. CONCLUSIONS: Patients with achalasia suffered from chronic low-grade inflammation with dysregulated immune cells and mediators associated with disease duration. CD8+ T cells might be the key pathogenic subpopulation of achalasia. Our results provide an important immune cell signature of the pathogenesis of achalasia.


Subject(s)
Esophageal Achalasia , Humans , Esophageal Achalasia/pathology , Cross-Sectional Studies , Esophageal Sphincter, Lower/pathology , Inflammation/pathology , Blood Cell Count , Manometry
11.
J Virol ; 97(1): e0161422, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36541804

ABSTRACT

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Subject(s)
Capsid Proteins , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Capsid Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins , Virus Replication/genetics , Nuclear Proteins/metabolism , Autophagy
12.
J Virol ; 96(22): e0155522, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36317879

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , Heterogeneous-Nuclear Ribonucleoprotein K , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Antiviral Agents , Chlorocebus aethiops , Coronavirus Infections/veterinary , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Interferons , Myeloid Differentiation Factor 88 , Nucleocapsid Proteins/physiology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/virology , Ubiquitin-Protein Ligases , Vero Cells , Interferon Type I/immunology
13.
Vet Microbiol ; 274: 109577, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36215773

ABSTRACT

KLF16, a member of KLFs (Krüppel-like factors), contributes to the progression of a variety of cancer types. There is, however, still uncertain regarding the role of KLF16 in viral replication and the signaling mechanism of type I IFN. It was discovered that KLF16 inhibited the replication of porcine epidemic diarrhea virus (PEDV) through the type I IFN signaling pathway. Besides, it can also be found that the expression of KLF16 was down-regulated after PEDV infection of LLC-PK1 cells. Furthermore, overexpression of KLF16 inhibited the replication of PEDV in Vero cells as well as LLC-PK1 cells, whereas the replication of PEDV was promoted by the knockdown of KLF16. KLF16 up-regulated the expression of interferons (IFNs) via the TRAF6-pTBK1-pIRF3 pathway with the aim of promoting the host antiviral innate immune response. In addition, the obtained findings proved that KLF16 plays a novel role in antiviral action, thereby offering novel possibilities for preventing and controlling PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Chlorocebus aethiops , Animals , Vero Cells , TNF Receptor-Associated Factor 6 , Cell Line , Coronavirus Infections/veterinary , Interferons , Signal Transduction , Virus Replication , Antiviral Agents , Kruppel-Like Transcription Factors
14.
Vet Microbiol ; 273: 109544, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049346

ABSTRACT

Autophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells. On the contrary, ATG4B knockdown facilitated PEDV replication. Moreover, ATG4B was observed to hinder PEDV replication by activating type-I IFN signaling. Further detailed analysis revealed that the ATG4B protein targeted and upregulated the TRAF3 protein to induce IFN expression via the TRAF3-pTBK1-pIRF3 pathway. The above data revealed a novel mechanism underlying the ATG4B-mediated viral restriction, thereby providing novel possibilities for preventing and controlling PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/genetics , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/genetics , Vero Cells , Virus Replication
15.
Metabolites ; 12(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893253

ABSTRACT

The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the stratum corneum and are essential for a vital epidermal permeability barrier. Several enzymes involved in acylceramide synthesis have been demonstrated to be associated with ichthyosis. The function of patatin-like phospholipase domain-containing protein 1 (PNPLA1) was a mystery until the finding that PNPLA1 gene mutations were involved in autosomal-recessive congenital ichthyosis (ARCI) patients, both humans and dogs. PNPLA1 plays an essential role in the biosynthesis of acylceramide as a CoA-independent transacylase. PNPLA1 gene mutations cause decreased acylceramide levels and impaired skin barrier function. More and more mutations in PNPLA1 genes have been identified in recent years. Herein, we describe the structural and functional specificity of PNPLA1, highlight its critical roles in acylceramide synthesis and skin barrier maintenance, and summarize the PNPLA1 mutations currently identified in ARCI patients.

16.
J Virol ; 96(13): e0061822, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35695513

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Subject(s)
Coronavirus Infections , Interferon Type I , Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Transcription Factors , Animals , Antiviral Agents , Cell Line , Chlorocebus aethiops , Coronavirus Infections/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , TNF Receptor-Associated Factor 3 , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Vero Cells
17.
J Biol Chem ; 298(8): 102190, 2022 08.
Article in English | MEDLINE | ID: mdl-35753351

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and dehydration in pigs and leads to great economic losses in the commercial swine industry. However, the underlying molecular mechanisms of host response to viral infection remain unclear. In the present study, we investigated a novel mechanism by which RALY, a member of the heterogeneous nuclear ribonucleoprotein family, significantly promotes the degradation of the PEDV nucleocapsid (N) protein to inhibit viral replication. Furthermore, we identified an interaction between RALY and the E3 ubiquitin ligase MARCH8 (membrane-associated RING-CH 8), as well as the cargo receptor NDP52 (nuclear dot protein 52 kDa), suggesting that RALY could suppress PEDV replication by degrading the viral N protein through a RALY-MARCH8-NDP52-autophagosome pathway. Collectively, these results suggest a preventive role of RALY against PEDV infection via the autophagy pathway and open up the possibility of inducing RALY in vivo as an effective prophylactic and preventive treatment for PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Chlorocebus aethiops , Coronavirus Infections/veterinary , Nucleocapsid Proteins , Porcine epidemic diarrhea virus/physiology , Ribonucleoproteins , Swine , Vero Cells , Virus Replication
18.
J Virol ; 96(10): e0007022, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35499322

ABSTRACT

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Subject(s)
Coronavirus Infections , DNA-Binding Proteins , Interferon Type I , Porcine epidemic diarrhea virus , Virus Replication , Animals , Coronavirus Infections/veterinary , DNA-Binding Proteins/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Myeloid Differentiation Factor 88/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , RNA/metabolism , Signal Transduction , Swine , TNF Receptor-Associated Factor 3/metabolism
19.
Autophagy ; 18(8): 1969-1981, 2022 08.
Article in English | MEDLINE | ID: mdl-34964697

ABSTRACT

Senecavirus A (SVA), an important emerging porcine virus, has outbreaks in different regions and countries each year, becoming a virus with global prevalence. SVA infection has been reported to induce macroautophagy/autophagy; however, the molecular mechanisms of autophagy induction and the effect of SVA on autophagy remain unknown. This study showed that SVA infection induced the autophagy process in the early stage of SVA infection, and the rapamycin-induced autophagy inhibited SVA replication by degrading virus 3 C protein. To counteract this, SVA utilized 2AB protein inhibiting the autophagy process from promoting viral replication in the late stage of SVA infection. Further study showed that SVA 2AB protein interacted with MARCHF8/MARCH8 and LC3 to degrade the latter and inhibit the autophagy process. In addition, we found that MARCHF8 was a positive regulator of type I IFN (IFN-I) signaling. During the autophagy process, the SVA 2AB protein targeted MARCHF8 and MAVS forming a large complex for degradation to deactivate IFN-I signaling. Together, our study reveals the molecular mechanisms of selective autophagy in the host against viruses and reveals potential viral strategies to evade the autophagic process and IFN-I signaling for successful pathogenesis.Abbreviations: Baf A1: bafilomycin A1; Co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole; hpi: hours post-infection; IFN: interferon; ISG: IFN-stimulated gene; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCHF8/MARCH8: membrane associated ring-CH-type finger 8; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; Rapa: rapamycin; RT: room temperature; siRNA: small interfering RNA; SVA: Senecavirus A; TCID50: 50% tissue culture infectious doses.


Subject(s)
Autophagy , Interferon Type I , Animals , Interferon Type I/metabolism , Macroautophagy , Picornaviridae , Sirolimus/pharmacology , Swine
20.
Arch Virol ; 166(7): 1903-1911, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33900472

ABSTRACT

Tripartite motif protein 21 (TRIM21) is an E3 ubiquitin ligase and cytosolic antibody receptor of the TRIM family. Previous reports have indicated that TRIM21 plays an important role during viral infection. This study aimed at examining the role of TRIM21 in the replication of porcine epidemic diarrhea virus (PEDV) and showed that TRIM21 inhibits PEDV proliferation by targeting and degrading the nucleocapsid (N) protein through the proteasomal pathway. Furthermore, the endogenous expression of TRIM21 was found to be downregulated by PEDV infection in Vero and LLC-PK1 cells. Overexpression of TRIM21 inhibited PEDV replication, whereas knockdown of TRIM21 increased viral titers and N protein levels. TRIM21 was found to interact and colocalize with the N protein, and the TRIM21-mediated antiviral effect was dependent on its ubiquitin ligase activity, which engages in polyubiquitination and degradation of the N protein in a proteasome-dependent manner. Taken together, these findings provide information about the role of TRIM21 in PEDV proliferation and increase our understanding of host-virus interactions.


Subject(s)
Cell Proliferation/physiology , Coronavirus Infections/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/metabolism , Proteasome Endopeptidase Complex/metabolism , Ribonucleoproteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/virology , Down-Regulation/physiology , HEK293 Cells , HeLa Cells , Host Microbial Interactions/physiology , Humans , Proteolysis , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...