Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 66(31): 8363-8370, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30016098

ABSTRACT

The development of multilayered interfacial engineering on the emulsion freeze-thaw properties has recently attracted widespread attention, because of the essential freeze-thaw storage process in some emulsion-matrix food products. In this research, we studied the role of salt concentration on the freeze-thaw properties of quinoa protein (QPI) nanoparticles-stabilized Pickering emulsions. The QPI nanoparticles (particle concentration c = 2%, w/v) with increasing particle size and surface hydrophobicity ( H0) were fabricated by ultrasound treatment at 100 W for 20 min, by varying the NaCl addition (salt concentrations, 0-500 mM). The sonicated QPI nanoparticles with increasing salt concentrations showed higher ß-sheet structure contents and stronger hydrophobic interactions, which were attributed to the decreasing charged groups and particle aggregation by electrostatic interactions. As compared to the sonicated QPI nanoparticles-stabilized Pickering emulsions ( c = 2%, oil fraction φ = 0.5) without salt accretion, the emulsions with salt accretion exhibited better freeze-thaw properties after three freeze-thaw circulations, which might be mainly caused by the generation of gel-like three-dimensional structure and multilayered network at the droplets' interface with smaller droplet sizes. Increasing the salt concentration progressively enhanced the freeze-thaw properties of sonicated QPI nanoparticles-stabilized Pickering emulsions probably due to the inhibit formation of ice crystal by the "salting-out" effects. The results of this study would provide great significance to investigate the role of salt concentration in the freeze-thaw properties of protein-stabilized Pickering emulsions.


Subject(s)
Chenopodium quinoa/chemistry , Plant Proteins/chemistry , Crystallization , Drug Stability , Emulsions/chemistry , Food Preservation/methods , Freezing , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Ice , Nanoparticles/chemistry , Osmolar Concentration , Particle Size , Sodium Chloride/administration & dosage , Sonication
2.
J Agric Food Chem ; 66(17): 4449-4457, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29664623

ABSTRACT

The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.


Subject(s)
Chenopodium quinoa/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Plant Proteins/chemistry , Adsorption , Disulfides/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanoparticles/ultrastructure , Particle Size , Plant Proteins/isolation & purification , Sonication
3.
J Agric Food Chem ; 65(39): 8744-8753, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28910527

ABSTRACT

In this study, the preparation and structural properties of spiral dextrin (SD)/vitamin E and SD/soy isoflavone inclusion complexes were studied. SD was obtained from debranched normal maize starch using isoamylases. After fractionation using a novel method of gradient ethanol precipitation, SD was separated into different fractions, among which SD-40 was found to be the optimal host molecule to prepare SD inclusion complexes with vitamin E or soy isoflavone. X-ray diffraction (XRD) and 13C cross-polarization magic angle spinning nuclear magnetic resonance (NMR) suggested that the crystalline structures of SD-40/vitamin E and SD-40/soy isoflavone were V6II and V6III types, respectively. Small-angle X-ray scattering revealed that the SD-40/vitamin E inclusion complex formed a tighter and more compact crystallite than the SD-40/soy isoflavone inclusion complex. Furthermore, the connection structures of inclusion complexes were investigated by two-dimensional nuclear Overhauser effect spectroscopy NMR, indicating that part of vitamin E with an alkyl chain was encapsulated in the helix cavity of SD-40, whereas the aromatic ring B of the soy isoflavone molecule was complexed by the helix cavity and screw of SD.


Subject(s)
Dextrins/chemistry , Glycine max/chemistry , Isoflavones/chemistry , Vitamin E/chemistry , Crystallization , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Starch/chemistry , X-Ray Diffraction , Zea mays/chemistry
4.
Ultrason Sonochem ; 39: 137-143, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28732930

ABSTRACT

The low solubility of wheat gluten limits its accessibility. This work aimed to study the impact of ultrasonic pretreatments on the gelation of wheat gluten. The pretreatments included ultrasound combined with alkali, urea, Na2SO3, with or without the addition of transglutaminase (TGase). The gel strength of wheat gluten was 287g/cm2 after treatment with Na2SO3/ultrasound/TGase. The free sulfhydryl and disulfide bond content was significantly affected by ultrasound treatment. After treatments including TGase crosslinking, the molecular weight of wheat gluten complexes became larger. The network formed by the wheat gluten was transformed into a dense and homogenous structure after the pretreatment with Na2SO3/ultrasound/TGase. The content of random coil of wheat gluten increased. The gelation of wheat gluten could also be significantly enhanced by Na2SO3/ultrasound treatment followed by TGase treatment. Using physical and chemical pretreatments to allow TGase to enhance the gelation of wheat gluten may increase its uses as a food additive.


Subject(s)
Glutens/chemistry , Transglutaminases/chemistry , Triticum/chemistry , Ultrasonic Waves , Disulfides/chemistry , Molecular Weight , Protein Structure, Secondary , Solubility
5.
Ultrason Sonochem ; 31: 590-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964986

ABSTRACT

Soy protein isolate (SPI) and wheat gluten (WG) are widely used in commercial food applications in Asia for their nutritional value and functional properties. However, individually each exhibits poor gelation. In this study, we examined the microbial transglutaminase (MTGase)-induced gelation properties of SPI and WG mixtures with high intensity ultrasonic pretreatment. Ultrasonic treatment reduced the particle size of SPI/WG molecules, which led to improvements in surface hydrophobicity (Ho) and free sulfhydryl (SH) group content. However, MTGase crosslinking facilitated the formation of disulfide bonds, markedly decreasing the content of free SH groups. Ultrasonic treatment improved the gel strength, water holding capacity, and storage modulus and resulted in denser and more homogeneous networks of MTGase-induced SPI/WG gels. In addition, ultrasonic treatment changed the secondary structure of the gel samples as determined by Fourier transform infrared spectroscopic analysis, with a reduction in α-helices and ß-turns and an increase in ß-sheets and random coils. Thus, ultrasound is useful in facilitating the gelation properties of MTGase-induced SPI/WG gels and might expand their utilization in the food protein gelation industry.


Subject(s)
Gels , Glutens/chemistry , Soybean Proteins/chemistry , Transglutaminases/chemistry , Triticum/chemistry , Ultrasonics , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Surface Properties
6.
J Sci Food Agric ; 96(10): 3559-66, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26592723

ABSTRACT

BACKGROUND: The integration of soybean protein isolate (SPI) with wheat gluten (WG) crosslinked via microbial transglutaminase (MTGase) may enhance the formation of ϵ-(γ-glutamyl)lysine covalent bonds, because SPI is rich in lysine and WG contains more glutamine. Microwave pretreatment may accelerate enzymatic reactions. In this study, we aimed to elucidate the effects of microwave pretreatment on the gelation properties of SPI and WG crosslinked with MTGase. RESULTS: Interestingly, the gel strength, water-holding capacity (WHC) and storage modulus (G') values of MTGase-induced SPI/WG gels were dramatically improved with increasing microwave power. Moreover, the MTGase crosslinking reaction promoted the formation of disulfide bonds, markedly reducing the free SH group and soluble protein content of gels. Fourier transform infrared spectroscopic analysis of SPI/WG gels showed that microwave pretreatment increased the proportion of α-helices and ß-turns and decreased the proportion of ß-sheets. Results from scanning electron microscopy indicated that the MTGase-induced SPI/WG gels had denser and more homogeneous microstructures after microwave pretreatment. CONCLUSION: The effect of microwave pretreatment is useful in advancing gelation characters of MTGase-induced SPI/WG gels and provides the possibility for expanding the application of food protein. © 2015 Society of Chemical Industry.


Subject(s)
Glutens/chemistry , Soybean Proteins/chemistry , Transglutaminases/chemistry , Triticum/chemistry , Dipeptides/chemistry , Gels , Microwaves , Water/chemistry
7.
Molecules ; 15(12): 8602-17, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-21116229

ABSTRACT

In order to identify wild fruits possessing high nutraceutical potential, the antioxidant activities of 56 wild fruits from South China were systematically evaluated. The fat-soluble components were extracted with tetrahydrofuran, and the water-soluble ones were extracted with a 50:3.7:46.3 (v/v) methanol-acetic acid-water mixture. The antioxidant capacities of the extracts were evaluated using the ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays, and their total phenolic contents were measured by the Folin-Ciocalteu method. Most of these wild fruits were analyzed for the first time for their antioxidant activities. Generally, these fruits had high antioxidant capacities and total phenolic contents. A significant correlation between the FRAP value and the TEAC value suggested that antioxidant components in these wild fruits were capable of reducing oxidants and scavenging free radicals. A high correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be the main contributors to the measured antioxidant activity. The results showed that fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagerstroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods. The results obtained are very helpful for the full utilization of these wild fruits.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Plants/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL
...