Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Surgery ; 176(2): 379-385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762380

ABSTRACT

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.


Subject(s)
Dexmedetomidine , Gastrointestinal Motility , Rats, Sprague-Dawley , Sepsis , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Animals , Sepsis/drug therapy , Gastrointestinal Motility/drug effects , Rats , Male , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Disease Models, Animal , Permeability/drug effects
2.
Phytomedicine ; 129: 155594, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614040

ABSTRACT

BACKGROUND: The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE: The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS: The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS: Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 µM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION: In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.


Subject(s)
Drugs, Chinese Herbal , Microglia , Neuralgia , Niacinamide , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Microglia/drug effects , Microglia/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Niacinamide/pharmacology , Mice, Inbred C57BL , Intestines/drug effects , Pain Threshold/drug effects , Analgesics/pharmacology , Disease Models, Animal
3.
J Med Food ; 27(1): 22-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236693

ABSTRACT

Astragali Radix (AR) or its extract has been used as an herbal medicine and dietary supplement in China, Europe, and the United States. The gut microbiota could provide new insights for exploring dietary supplements' underlying mechanism on organisms. However, no reports have focused on the regulatory effect of AR on the gut microbiota as a dietary supplement. In this study, healthy ICR mice of either sex were divided into AR and control (CON) groups and given AR water extract (4.55 mg/kg·day-1) or saline by gavage for 14 days, respectively. Then 16S rRNA gene sequencing and ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry-based fecal metabolomics were integrated to investigate the benefits of dietary AR. Weighted gene coexpression network analysis was also introduced to investigate the metabolites with highly synergistic changes. AR supplementation influenced the structure of intestinal microflora, especially enriching short-chain fatty acid-producing bacteria g_Coprobacillus, g_Prevotella, and g_Parabacteroides. AR also significantly altered the fecal metabolome, mainly related to amino acid metabolism, nucleotide metabolism, and bile acid (BA) metabolism. Moreover, the increased secondary BAs and BA-sulfates might closely relate to intestinal microflora. These findings provide valuable insights for future research of dietary AR as a functional food.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , RNA, Ribosomal, 16S/genetics , Mice, Inbred ICR , Metabolomics/methods , Metabolome
4.
Metab Brain Dis ; 38(8): 2849-2864, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37906393

ABSTRACT

INTRODUCTION: Chaigui granules are a novel manufactured traditional Chinese antidepressant medicine, which is originated from the ancient classical prescription of Xiaoyaosan. It ameliorated depression-like behavior and concomitant symptoms in animal models. But its antidepressant mechanism is still unclear. Therefore, network pharmacology and molecular biology were used to explore underlying antidepressant mechanism in this study. METHODS: Firstly, network pharmacology was used to screen main active ingredients and potential targets in the treatment of depression with Chaigui granules, and to perform pathway enrichment analysis. Secondly, chronic and unpredictable mild stress-induced depression model rats were used, and behavioral tests were used to evaluate the antidepressant effect of Chaigui granules. Finally, the core targets and key pathways predicted by network pharmacology were validated by qRT-PCR and Western blot to determine the relevant gene and protein expression levels in rat hippocampus. RESULTS: The results of network pharmacology indicated that the PI3K/Akt signaling pathway may play a key role in antidepressant of Chaigui granules. The results of animal experiments showed that Chaigui granules significantly modulated behavioral indicators. Subsequently, the upregulation of relative mRNA levels of mTOR, Akt and PI3K and downregulation of GSK-3ß and FoxO3a were observed in rat hippocampus by molecular biology diagnosis. In addition, the decreased expression of Akt and mTOR in CUMS rats hippocampus was significantly reversed, and the expression levels of GSK-3ß and FoxO3a were upregulated. CONCLUSIONS: Based on the results of network pharmacology and animal experiment validation, Chaigui granules may reverse CUMS-induced depression-like behavior in rats through PI3K/Akt/mTOR signaling pathway.


Subject(s)
Depression , Proto-Oncogene Proteins c-akt , Rats , Animals , Depression/drug therapy , Depression/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Network Pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
5.
Adv Biol (Weinh) ; 7(8): e2300084, 2023 08.
Article in English | MEDLINE | ID: mdl-37382195

ABSTRACT

Alzheimer's Disease (AD) is an irreversible neurodegenerative disease, which urgently needs more effective treatment strategies. Arctium lappa L. leaf (burdock leaf) performs wide pharmacological activities, increasing evidence hinted that burdock leaves can ameliorate AD. This research aims to explore the bioactive ingredients and mechanisms of burdock leaves against AD by performing chemical profiles, network pharmacology, and molecular docking. 61 components are identified by liquid chromatography equipped with mass spectrometry. 792 targets of ingredients and 1661 AD-related genes are retrieved from public databases. Ten critical ingredients are identified from the topology analysis of the compound-target network. CytoNCA, AlzData database, and Aging Atlas database contribute to the foundation of 36 potential targets and four clinically significant targets (STAT3, RELA, MAPK8, and AR). The gene ontology (GO) analysis manifests that the included processes are close to the pathogenesis of AD. PI3K-Akt signaling pathway and AGE-RAGE signaling pathway may be important therapeutic mechanisms. Molecular docking results imply that network pharmacology results are reliable. Furthermore, the clinical meanings of core targets are also evaluated with the Gene Expression Omnibus (GEO) database. This research will provide research direction for the application of burdock leaves in the treatment of AD.


Subject(s)
Alzheimer Disease , Arctium , Neurodegenerative Diseases , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Molecular Docking Simulation , Network Pharmacology , Pharmaceutical Vehicles , Phosphatidylinositol 3-Kinases , Plant Leaves , Humans
6.
J Ethnopharmacol ; 317: 116762, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37301308

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) is a perennial herb with anti-inflammatory, antibacterial, and antioxidant activities, which is traditionally used to treat inflammation of respiratory tract and gastrointestinal tract, abdominal cramps, bacterial and viral infections. Clinically, it is often used to treat inflammatory-related diseases. Research has shown that the ethanol extract of Scutellaria baicalensis Georgi (SGE) has anti-inflammatory effect, and its main components baicalin and baicalein have analgesic effects. However, the mechanism of SGE in relieving inflammatory pain has not been deeply studied. AIM OF THE STUDY: This study aimed to evaluate the analgesic effect of SGE on complete Freund's adjuvant (CFA)-induced inflammatory pain rats, and to investigate whether its effect on relieving inflammatory pain is associated with regulation of P2X3 receptor. MATERIALS AND METHODS: The analgesic effects of SGE on CFA-induced inflammatory pain rats were evaluated by measuring mechanical pain threshold, thermal pain threshold, and motor coordination ability. The mechanisms of SGE in relieving inflammatory pain were explored by detecting inflammatory factors levels, NF-κB, COX-2 and P2X3 expression, and were further verified by addition of P2X3 receptor agonist (α, ß me-ATP). RESULTS: Our results revealed that SGE can notably increase the mechanical pain threshold and thermal pain threshold of CFA-induced inflammatory pain rats, and markedly alleviate the pathological damage in DRG. SGE could suppress the release of inflammatory factors including IL-1ß, IL-6, TNF-α and restrain the expression of NF-κB, COX-2 and P2X3. Moreover, α, ß me-ATP further exacerbated the inflammatory pain of CFA-induced rats, while SGE could markedly raise the pain thresholds and relieve inflammatory pain. SGE could attenuate the pathological damage, inhibit P2X3 expression, inhibit the elevation of inflammatory factors caused by α, ß me-ATP. SGE can also inhibit NF-κB and ERK1/2 activation caused by α, ß me-ATP, and inhibit the mRNA expression of P2X3, COX-2, NF-κB, IL-1ß, IL-6 and TNF-α in DRG of rats induced by CFA coupled with α, ß me-ATP. CONCLUSIONS: In summary, our research indicated that SGE could alleviate CFA-induced inflammatory pain by suppression of P2X3 receptor.


Subject(s)
NF-kappa B , Receptors, Purinergic P2X3 , Rats , Animals , Freund's Adjuvant , NF-kappa B/metabolism , Ethanol/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Scutellaria baicalensis , Cyclooxygenase 2/metabolism , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Analgesics/adverse effects , Adenosine Triphosphate
7.
Neurochem Res ; 48(11): 3363-3377, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37277556

ABSTRACT

More and more evidence shows that metabolic reprogramming is closely related to the occurrence of AD. The metabolic conversion of oxidative phosphorylation into glycolysis will aggravate microglia-mediated inflammation. It has been demonstrated that baicalein could inhibit neuroinflammation in LPS-treated BV-2 microglial cells, but whether the anti-neuroinflammatory mechanisms of baicalein were related to glycolysis is unclear. Our results depicted that baicalein significantly inhibited the levels of nitric oxide (NO), interleukin-6 (IL-6), prostaglandin 2 (PGE2) and tumor necrosis factor (TNF-α) in LPS-treated BV-2 cells. 1H-NMR metabolomics analysis showed that baicalein decreased the levels of lactic acid and pyruvate, and significantly regulated glycolytic pathway. Further study revealed that baicalein significantly inhibited the activities of glycolysis-related enzymes including hexokinase (HK), 6-phosphate kinase (6-PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and inhibited STAT3 phosphorylation and c-Myc expression. By using of STAT3 activator RO8191, we found that baicalein suppressed the increase of STAT3 phosphorylation and c-Myc expression triggered by RO8191, and inhibited the increased levels of 6-PFK, PK and LDH caused by RO8191. In conclusion, these results suggested that baicalein attenuated the neuroinflammation in LPS-treated BV-2 cells by inhibiting glycolysis through STAT3/c-Myc pathway.


Subject(s)
Flavanones , Lipopolysaccharides , Humans , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases , Flavanones/pharmacology , Flavanones/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Microglia/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism
8.
J Affect Disord ; 331: 121-129, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36948469

ABSTRACT

BACKGROUND: Existing research has suggested that depression results in disorders of glucose metabolism in the organism which causing insufficient energy supply. However, the overall changes in glucose metabolism that arise from depression have not been clarified. METHODS: In this study, the depression-like behavior in chronically unpredictable mild stressed rats was investigated, and the fate of glucose was tracked through isotope tracing and mass spectrometry, with a focus on metabolite changes in cecal contents. RESULTS: As indicated by the results, the isotopic results of cecal contents can indicate the metabolic end of the organism. Moreover, the TCA cycle activity was notably reduced, and the gluconeogenesis pathway was abnormally up-regulated in the CUMS-induced rats. The organism expedited other glucose metabolism pathways to make up for the insufficiency of energy. As a result, the activity of the inefficient glycolysis pathway was increased. LIMITATIONS: Existing research has only investigated the metabolism of 13C-glucose, and lipids and proteins have been rarely explored. CONCLUSIONS: The chronic unpredictable mild stress can inhibit the entry of pyruvate into mitochondria in SD rats, such that the activity of TCA is reduced, and insufficient energy supply is caused. The organism is capable of expediting other glucose metabolism rate pathways to make up for the insufficiency of energy, whereas it still cannot compensate for the loss of energy. As a result, CUMS-induced rats exhibited high-rate and low-efficiency glucose metabolism.


Subject(s)
Depression , Metabolomics , Rats , Animals , Rats, Sprague-Dawley , Metabolomics/methods , Glucose , Stress, Psychological/metabolism , Disease Models, Animal
9.
J Ethnopharmacol ; 300: 115702, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36099982

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM) theory, depression is an emotional disease, which is thought to be related to stagnation of liver qi and dysfunction of the spleen in transport. Xiaoyao San (XYS) is considered to have the effects of soothing liver-qi stagnation and invigorating the spleen. The spleen has the function to transport and transform nutrients. The liver has also termed the center of energy metabolism in the body. Therefore, exploring the antidepressant effects of XYS from the perspective of energy metabolism may reveal new findings. AIM OF THE STUDY: Glucose catabolism is an important part of energy metabolism. In recent years, several researchers have found that XYS can exert antidepressant effects by modulating abnormalities in glucose catabolism-related metabolites. The previous research of our research group found that the hippocampus glucose catabolism was disordered in depression. However, the antidepressant potential of XYS through modulating the disorders of hippocampal glucose catabolism and the specific metabolic pathways and targets of XYS action were still unknown. The aim of this study was to address the above scientific questions. MATERIALS AND METHODS: In this research, the CUMS (chronic unpredictable mild stress) model was used as the animal model of depression. The antidepressant effect of XYS was evaluated by behavioral indicators. The specific pathways and targets of XYS modulating the disorders of glucose catabolism in the hippocampus of CUMS rats were obtained by stable isotope-resolved metabolomics. Further, the isotope tracing results were also verified by molecular biology and electron transmission electron microscopy. RESULTS: The results demonstrated that XYS pretreatment could significantly improve the depressive symptoms induced by CUMS. More importantly, it was found that XYS could modulate the disorders of glucose catabolism in the hippocampus of CUMS rats. Stable isotope-resolved metabolomics and enzyme activity tests showed that Lactate dehydrogenase (LDH), Pyruvate carboxylase (PC), and Pyruvate dehydrogenase (PDH) were targets of XYS for modulating the disorders of glucose catabolism in the hippocampus of CUMS rats. The Succinate dehydrogenase (SDH) and mitochondrial respiratory chain complex V (MRCC-Ⅴ) were targets of XYS to improve abnormal mitochondrial oxidative phosphorylation in the hippocampus of CUMS rats. XYS was also found to have the ability to improve the structural damage of mitochondria and nuclei in the hippocampal caused by CUMS. CONCLUSIONS: This study was to explore the antidepressant effect of XYS from the perspective of glucose catabolism based on a strategy combining stable isotope tracing, molecular biology techniques, and transmission electron microscopy. We not only obtained the specific pathways and targets of XYS to improve the disorders of glucose catabolism in the hippocampus of CUMS rats, but also revealed the specific targets of the pathways of XYS compared with VLF.


Subject(s)
Drugs, Chinese Herbal , Succinate Dehydrogenase , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Depression/psychology , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Glucose/pharmacology , Hippocampus/metabolism , Isotopes/metabolism , Isotopes/pharmacology , Lactate Dehydrogenases/metabolism , Metabolomics/methods , Pyruvate Carboxylase , Pyruvates/pharmacology , Rats , Stress, Psychological/drug therapy , Succinate Dehydrogenase/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5224-5234, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472029

ABSTRACT

This study compared the toxicity of raw Bupleuri Radix(BR) and vinegar-processed Bupleuri Radix(VPBR) based on proton nuclear magnetic resonance(~1H-NMR), and explored the mechanism of toxicity. Thirty-two male Sprague-Dawley(SD) rats were randomly divided into four groups: a control group(distilled water), a raw BR group(15 g·kg~(-1)·d~(-1)), a rice VPBR(R-VPBR) group(15 g·kg~(-1)·d~(-1)), and a shanxi VPBR(S-VPBR) group(15 g·kg~(-1)·d~(-1)). After administration for 30 d, pathological sections were treated and observed, and biochemical indexes related to liver and renal function were determined. The serum, liver, and kidney of rats were collected and analyzed by ~1H-NMR. The principal component analysis(PCA) and orthogonal partial least squares-discrimination analysis(OPLS-DA) were performed. The results showed that, as compared with the control group, alanine aminotransferase(ALT), aspartate aminotransferase(AST), and alkaline phosphatase(ALP) in the raw BR group were increased significantly, while ALT and ALP in the R-VPBR and S-VPBR groups were significantly decreased(P<0.05), which indicated that BR showed certain hepatotoxicity, and vinegar processing reduced its hepatotoxicity. No significant difference of blood urea nitrogen(BUN) and creatinine(CREA), the biochemical indexes related to renal function, was observed in the control group and administration groups, indicating that BR had less effect on the renal function. The results of multivariate statistical analysis showed that the biomarkers of BR affecting liver metabolism were methionine, glutamine, and glutamic acid, and affecting kidney metabolism were taurine, ornithine, and inosine. These biomarkers were mainly involved in amino acid metabolism, energy metabolism, lipid metabolism, and taurine metabolism. VPBR alleviated the effect on the biomarkers, and S-VPBR had smaller effect than R-VPBR. Combining the results of biochemical indexes and metabolomics analysis, both raw BR and VPBR showed toxic effect on rats, whereas vinegar processing reduced its toxicity. S-VPBR has smaller effect on kidney and liver metabolism than R-VPBR, which indicates that the vinegar used for processing has certain effect on the toxicity of BR.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Male , Rats , Animals , Acetic Acid/toxicity , Acetic Acid/chemistry , Drugs, Chinese Herbal/chemistry , Proton Magnetic Resonance Spectroscopy , Rats, Sprague-Dawley , Metabolomics/methods , Liver , Chemical and Drug Induced Liver Injury/pathology , Taurine/pharmacology
11.
Front Pharmacol ; 13: 1005438, 2022.
Article in English | MEDLINE | ID: mdl-36353500

ABSTRACT

Background: There is a significant gender difference in the prevalence of depression. Recent studies have shown that estrogen plays a crucial role in depression. Therefore, studying the specific mechanism of estrogen's role in depression can provide new ideas to address the treatment of depression. Chaigui granule has been shown to have exact antidepressant efficacy, and the contents of saikosaponin (a, b1, b2, d) and paeoniflorin in Chaigui granule are about 0.737% and 0.641%, respectively. Some studies have found that they can improve depression-induced decrease in testosterone (T) levels (∼36.99% decrease compared to control). However, whether Chaigui granule can exert antidepressant efficacy by regulating estrogen is still unclear. This study aimed to elucidate the regulation of estrogen levels by Chaigui granule and the underlying mechanism of its anti-depressant effect. Methods: Eighty-four male Sprague-Dawley (SD) rats were modeled using a chronic unpredictable mild stress (CUMS) procedure. The administration method was traditional oral gavage administration, and behavioral indicators were used to evaluate the anti-depressant effect of Chaigui granule. Enzyme-linked immunosorbent assay (ELISA) was adopted to assess the modulating impact of Chaigui granule on sex hormones. Then, reverse transcription-quantitative PCR (RT-qPCR), and Western blot (WB) techniques were employed to detect extracellular regulated protein kinases (ERK) signaling-related molecules downstream of estradiol in the hippocampus tissue. Results: The administration of Chaigui granule significantly alleviated the desperate behavior of CUMS-induced depressed rats. According to the results, we found that Chaigui granule could upregulate the level of estradiol (E2) in the serum (∼46.56% increase compared to model) and hippocampus (∼26.03% increase compared to model) of CUMS rats and increase the levels of CYP19A1 gene and protein, which was the key enzyme regulating the synthesis of T into E2 in the hippocampus. Chaigui granule was also found to have a significant back-regulatory effect on the gene and protein levels of ERß, ERK1, and ERK2. Conclusion: Chaigui granule can increase the synthesis of E2 in the hippocampus of CUMS-induced depressed rats and further exert antidepressant effects by activating the CYP19A1-E2-ERKs signaling pathway.

12.
Front Aging Neurosci ; 14: 911924, 2022.
Article in English | MEDLINE | ID: mdl-35912075

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and ß-hydroxybutyric acid (ß-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.

13.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3463-3474, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850797

ABSTRACT

The difference of astragaloside Ⅳ content and the expression of its biosynthesis related genes in imitating wild Astragalus mongolicus(IWA) and cultivated A.mongolicus(CA) under different growth years were systematically compared and analyzed.Then the key enzyme genes affected the difference of astragaloside Ⅳ content in the above two A.mongolicus were screened.High-perfo-rmance liquid chromatography(HPLC)was used to determine the content of astragaloside Ⅳ in A.mongolicusunderthe above two diffe-rent growth patterns.Based on the Illumina HiSeq and PacBio high-throughput sequencing platforms, thesecond-and third-generation transcriptome sequencing(RNA-Seq)databaseof the two A.mongolicuswas constructed.The related enzyme genes in the biosynthetic pathway of astragaloside Ⅳ were screened and verified byquantitative reverse transcriptase polymerase chain reaction(RT-qPCR).The RNA-sequencing(RNA-Seq) and RT-qPCR data of each gene were subjected to correlation analysis and trend analysis.The results showed that the variation trend of astragaloside Ⅳ contentby HPLC wasthe same as that of genes by RNA-Seq and RT-qPCR in 1-4 year IWA and 1-2 year CA.The trend level of astragaloside Ⅳ contentwas lower in 2-year IWA than 1-year IWA.Compared with 2-year IWA, 3-year IWA had an upward trend, while 4-year IWA hada downward trend versus 3-year IWA.Additionally, 1-year CA had increased trendthan 2-year CA.However, the content of astragaloside Ⅳ in 5-year IWA was higher than that of 6-year IWA, which wasinconsistent with the findings of RNA-Seq and RT-qPCR.This study preliminarily clarifiedthat the difference of astragaloside Ⅳ contentin 1-4 year IWA and 1-2 year CA wasclosely related to the expression of the upstream and midstream genes(MVK, CMK, PMK, MVD, SS) in the biosynthetic pathway.The results facilitate the production and planting of Radix Astragali seu Hedysari.


Subject(s)
Astragalus Plant , Saponins , Triterpenes , Astragalus Plant/genetics , Astragalus Plant/metabolism , Astragalus propinquus/genetics , Saponins/analysis , Saponins/genetics , Triterpenes/analysis
14.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3251-3257, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851118

ABSTRACT

This study aims to establish a method for the component content determination and fingerprint evaluation of Mori Cortex, fried Mori Cortex and its standard decoction, and to reveal the quality transfer law among the three based on transfer rate, extraction rate, and fingerprint similarity.Fifteen representative batches of Mori Cortex decoction pieces were collected to prepare fried Mori Cortex and its standard decoction.UPLC-PDA was employed to establish the content determination method and fingerprint.The established UPLC method and fingerprint could be applied to the detection of Mori Cortex, fried Mori Cortex and its standard decoction.The UPLC fingerprints of the 15 batches of Mori Cortex and fried Mori Cortex had good similarity(>0.9) and the same common peaks.However, only one characteristic peak(mulberroside A) could be observed in the fingerprint of fried Mori Cortex standard decoction, which indicated that the corresponding components of other common peaks in the fingerprint of Mori Cortex had low content in the water extract.The extraction rates of mulberroside A from Mori Cortex, fried Mori Cortex and its standard decoction were 1.49%-2.00%, 1.62%-2.27% and 0.75%-1.29%, respectively.Mulberroside A showed the transfer rate of 103.7%-116.3% from Mori Cortex to fried Mori Cortex and 45.7%-56.9% from fried Mori Cortex to its standard decoction.The extraction rates of the 15 batches of fried Mori Cortex standard decoctions were 14.7%-19.5%.All the above indicators were within±30% of the mean value.This study established a method for the determination of mulberroside A content and fingerprint of Mori Cortex, fried Mori Cortex and its standard decoction, and clarified the quality transfer law among the three.It established the method for quality evaluation of Mori Cortex and fried Mori Cortex and can provide reference for the whole-process quality control in the preparation of the agents containing fried Mori Cortex.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid , Quality Control
15.
Phytomedicine ; 101: 154107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561503

ABSTRACT

BACKGROUND: Cisplatin (CDDP), one of the widely used chemotherapeutic drugs, can induce a series of side effects, such as hepatotoxicity and gastrointestinal toxicity. Astragali Radix (AR) is widely used as the tonic herbal medicine in traditional Chinese medicine (TCM). However, there was no report about the hepatoprotective effect of AR against the cisplatin-induced hepatic damage. PURPOSE: This study aimed to investigate the protective effect and potential mechanism of AR water extract against the cisplatin-induced liver injury. METHODS: Cisplatin was utilized to induce the liver injury using ICR mice, and the protective effect of AR was evaluated by serum biochemistry indices and liver histopathology. Then UHPLC Q-TOF-MS/MS-based untargeted serum metabolomics approach combined with 16S rRNA-based microbiota analysis was used to explore the underlying biomarkers and mechanism about the liver-protective effect of AR. RESULTS: AR could decrease the serum AST and ALT, ameliorate hepatic pathological damages caused by cisplatin. Serum metabolomics indicated AR could regulate the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, purine metabolism, and fatty acid biosynthesis. In addition, 16S rRNA gene sequencing analysis showed that AR could regulate cisplatin-induced gut microbiota disorder, especially the inflammation-related bacteria (p_Deferribacteres, g_Enterococcus, and g_Alistipes, etc.), and the short chain fatty acids (SCFAs)-producing bacteria (g_Alloprevotella, g_Intestinimoas, and g_Flavonifractor). Moreover, 7 mice (AR-7) showed better liver protective effect than the other 3 mice (AR-3), and their regulatory effect on the gut microbiota and serum metabolites were also different, indicating the presence of inter-individual variability for the liver protective effect of AR. CONCLUSIONS: This study revealed the protective effect and the potential mechanisms of AR against cisplatin-induced liver injury, and found that inter-individual variability of the liver protective effect of AR was related to the host microbiome and metabolome. These findings provided new insight into the health effect of dietary AR as a functional food for cisplatin-based chemotherapy.


Subject(s)
Astragalus Plant , Chemical and Drug Induced Liver Injury, Chronic , Drugs, Chinese Herbal , Animals , Cisplatin/adverse effects , Drugs, Chinese Herbal/pharmacology , Genes, rRNA , Metabolomics , Mice , Mice, Inbred ICR , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
16.
Article in English | MEDLINE | ID: mdl-35449809

ABSTRACT

Background: Naoluo Xintong decoction (NLXTD) is a traditional Chinese medicine (TCM) formula which has been used to improve neuronal functional recovery after cerebral ischemic stroke. However, the molecular mechanism underlying NLXTD's amelioration of ischemic stroke remains unclear. The present study was designed to explore the effect and mechanism of NLXTD on brain angiogenesis in a rat model with cerebral ischemia-reperfusion (I/R) injury targeting the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Materials and Methods: Cerebral I/R model was established by the classical middle cerebral artery occlusion (MCAO) method. Sprague-Dawley (SD) male rats (n = 80) were randomly divided into the sham-operation group, the model group, the HIF-1α inhibitor 2-methoxyestradiol (2ME2) group, the 2ME2 with NLXTD group, and the NLXTD group. Neurological deficit test, TTC staining, H&E staining, TUNEL staining, immunohistochemistry (IH), immunofluorescence (IF), western blot, and quantitative RT-PCR were performed to evaluate the effect of NLXTD after MCAO. Results: Administration of NLXTD significantly decreased neuron deficiency scores, reduced brain infarct volume, and lowered damaged and apoptotic cells after brain I/R injury in rats. Meanwhile, NLXTD had a protective effect on angiogenesis by increasing the MVD and the expressions of BrdU and CD34, which enhanced the number of endothelial cells in the ischemic penumbra brain. NLXTD treatment significantly raised the protein and mRNA levels of HIF-1α, VEGF, VEGFR2, and Notch1 compared with the model treatment. In contrast, a specific HIF-1α inhibitor, 2ME2, inhibited the improvement of neurological function and angiogenesis in NLXTD-induced rats with cerebral I/R injury, suggesting that NLXTD played a positive role in ischemic brain injury by activating the HIF-1α/VEGF signaling pathway. Conclusions: NLXTD exerts neuroprotection targeting angiogenesis by upregulating the HIF-1α/VEGF signaling pathway on cerebral I/R injury rats.

17.
Front Pharmacol ; 13: 839635, 2022.
Article in English | MEDLINE | ID: mdl-35281923

ABSTRACT

Astragali Radix polysaccharides (APSs) have a wide range of biological activities. Our preliminary experiment showed that APS-Ⅱ (10 kDa) was the main immunologically active component of APSs. However, the characteristic structure related to activity of APS-Ⅱ needs further verification and clarification. In this study, APS-II was degraded by endo α-1,4-glucosidase. The degraded products with different degrees of polymerization [1-3 (P1), 3-6 (P2), 7-14 (P3), and 10-18 (P4)] were obtained using a polyacrylamide gel chromatography column. The structural features of the different products were characterized by HPGPC, monosaccharide composition, Fourier transform infrared spectrum, GC-MS, nuclear magnetic resonance, and UPLC-ESI-QTOF-MS analysis. Specific immune and non-specific immune cell tests were used to identify the most immunogenic fractions of the products. The backbone of P4 was speculated to be α-D-1,4-linked glucans and rich in C2 (25.34%) and C6 (34.54%) branches. Immune screening experiments indicated that the activity of P4 was better than that of APS-II and the other three components. In this research, the relationship between the structure of APS-Ⅱ and the immune activity from the degradation level of polysaccharides was studied, laying a foundation for the quality control and product development of APSs.

18.
Phytomedicine ; 99: 153990, 2022 May.
Article in English | MEDLINE | ID: mdl-35202958

ABSTRACT

BACKGROUND: Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE: This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS: The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated ß-galactosidase (SA-ß-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS: Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-ß-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION: In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.

19.
Anal Bioanal Chem ; 414(4): 1525-1537, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35024914

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers in the world. Biomarkers for early diagnosis of HCC are still lacking, and noninvasive and effective biomarkers are urgently needed. Metabolomics is committed to studying the changes of metabolites under stimulation, and provides a new approach for discovery of potential biomarkers. In the current work, 1H nuclear magnetic resonance (NMR) metabolomics approach was utilized to explore the potential biomarkers in HCC progression, and the biomarker panel was evaluated by receiver operating characteristic (ROC) curve analyses. Our results revealed that a biomarker panel consisting of hippurate, creatinine, putrescine, choline, and taurine might be involved in HCC progression. Functional pathway analysis showed that taurine and hypotaurine metabolism is markedly involved in the occurrence and development of HCC. Furthermore, our results indicated that the TPA activity and the level and expression of PKM2 were gradually increased in HCC progression. This research provides a scientific basis for screening potential biomarkers of HCC.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Animals , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/urine , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Diethylnitrosamine/toxicity , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Metabolic Networks and Pathways , Multivariate Analysis , ROC Curve , Rats, Sprague-Dawley , Reproducibility of Results
20.
J Proteome Res ; 21(3): 788-797, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34699232

ABSTRACT

Depression is a common psychopathological state or mood disorder syndrome. The serious risks to human life and the inadequacy of the existing antidepressant drugs have driven us to understand the pathogenesis of depression from a new perspective. Our research group has found disturbances in glucose catabolism in both depression and nephrotic syndrome. What are the specific metabolic pathways and specificities of glucose catabolism disorders caused by depression? To address the above scientific questions, we creatively combined traditional metabolomics technology with stable isotope-resolved metabolomics to research the glucose catabolism of the corticosterone-induced PC12 cell damage model and the adriamycin-induced glomerular podocyte damage model. The results showed an increased flux of pyruvate metabolism in depression. The increased flux of pyruvate metabolism led to an activation of gluconeogenesis in depression. The disturbed upstream metabolism of succinate caused the tricarboxylic acid cycle (TCA cycle) to be blocked in depression. In addition, there were metabolic disturbances in the purine metabolism and pentose phosphate pathways in depression. Compared with nephrotic syndrome, pyruvate metabolism, the TCA cycle, and gluconeogenesis metabolism in depression were specific. The metabolic pathways researched above are likely to be important targets for the efficacy of antidepressants.


Subject(s)
Depression , Nephrotic Syndrome , Adrenal Cortex Hormones , Animals , Citric Acid Cycle , Depression/chemically induced , Female , Glucose/metabolism , Humans , Isotopes , Male , Metabolomics/methods , PC12 Cells , Pyruvic Acid , Rats
SELECTION OF CITATIONS
SEARCH DETAIL