Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Cell Cycle ; 23(5): 573-587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38701194

ABSTRACT

Myogenic differentiation (MyoD) 1, which is known as a pivotal transcription factor during myogenesis, has been proven dysregulated in several cancers. However, litter is known about the precise role and downstream genes of MyoD1 in gastric cancer (GC) cells. Here, we report that MyoD1 is lowly expressed in primary GC tissues and cells. In our experiments, overexpression of MyoD1 inhibited cell proliferation. Downstream genes of MyoD1 regulation were investigated using RNA-Seq. As a result, 138 up-regulated genes and 20 down-regulated genes and 27 up-regulated lncRNAs and 20 down-regulated lncRNAs were identified in MyoD1 overexpressed MKN-45 cells, which participated in epithelial cell signaling in Helicobacter pylori infection, glycosaminoglycan biosynthesis (keratan sulfate), notch signaling pathway, and others. Among these genes, BIK was directly regulated by MyoD1 in GC cells and inhibited cancer cell proliferation. The BIK knockdown rescued the effects of MyoD1 overexpression on GC cells. In conclusion, MyoD1 inhibited cell proliferation via 158 genes and 47 lncRNAs downstream directly or indirectly that participated in multiple signaling pathways in GC, and among these, MyoD1 promotes BIK transcription by binding to its promoter, then promotes BIK-Bcl2-caspase 3 axis and regulates GC cell apoptosis.


Subject(s)
Apoptosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , MyoD Protein , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Apoptosis/genetics , MyoD Protein/metabolism , MyoD Protein/genetics , Cell Proliferation/genetics , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Transcription, Genetic/genetics
2.
J Proteome Res ; 23(1): 25-39, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38088868

ABSTRACT

Periodontitis is a prevalent oral inflammatory disease that can result in tooth loss and is closely linked to type 2 diabetes (T2D). In this study, we analyzed the salivary proteome and intact N-glycopeptides (IGPs) of individuals with mild-moderate, severe, aggressive periodontitis, and periodontitis with T2D, including those treated with antidiabetic drugs, to identify specific signatures associated with the disease. Our results revealed that salivary proteins and glycoproteins were altered in all periodontitis groups (PRIDE ID: 1-20230612-72345), with fucose- and sialic acid-containing N-glycans showing the greatest increase. Additionally, differentially expressed proteins were classified into 9 clusters, including those that were increased in all periodontitis groups and those that were only altered in certain types of periodontitis. Interestingly, treatment with antidiabetic drugs reversed many of the changes observed in the salivary proteome and IGPs in T2D-related periodontitis, suggesting a potential therapeutic approach for managing periodontitis in patients with T2D. Consistent with MS/MS results, the expression of salivary IGHA2 and Fucα1-3/6GlcNAc (AAL) was significantly increased in MP. These findings provide new insights into the pathogenesis of periodontitis and highlight the potential of salivary biomarkers for diagnosis, prognosis, and monitoring of disease progression and treatment response.


Subject(s)
Diabetes Mellitus, Type 2 , Periodontitis , Humans , Proteome/genetics , Proteome/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycopeptides/metabolism , Tandem Mass Spectrometry , Biomarkers/metabolism , Hypoglycemic Agents , Saliva/metabolism
3.
J Control Release ; 366: 297-311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161034

ABSTRACT

Multidrug-resistant (MDR) Acinetobacter baumannii infections pose a significant challenge in burn wound management, necessitating the development of innovative therapeutic strategies. In this work, we introduced a novel polymyxin B (PMB)-targeted liposomal photosensitizer, HMME@Lipo-PMB, for precise and potent antimicrobial photodynamic therapy (aPDT) against burn infections induced by MDR A. baumanni. HMME@Lipo-PMB-mediated aPDT exhibited enhanced antibacterial efficacy by specifically targeting and disrupting bacterial cell membranes, and generating increased intracellular ROS. Remarkably, even at low concentrations, this targeted approach significantly reduced bacterial viability in vitro and completely eradicated burn infections induced by MDR A. baumannii in vivo. Additionally, HMME@Lipo-PMB-mediated aPDT facilitated burn infection wound healing by modulating M1/M2 macrophage polarization. It also effectively promoted acute inflammation in the early stage, while attenuated chronic inflammation in the later stage of wound healing. This dynamic modulation promoted the formation of granulation tissue, angiogenesis, and collagen regeneration. These findings demonstrate the tremendous potential of HMME@Lipo-PMB-mediated aPDT as a promising alternative for the treatment of burn infections caused by MDR A. baumannii.


Subject(s)
Acinetobacter baumannii , Communicable Diseases , Humans , Photosensitizing Agents/therapeutic use , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Wound Healing , Inflammation , Liposomes , Macrophages
6.
Front Genet ; 13: 1015049, 2022.
Article in English | MEDLINE | ID: mdl-36313425

ABSTRACT

Acute rejection (AR) is a common and grave complication of liver transplantation (LT). The diagnosis of AR is challenging because it has nonspecific clinical features and requires invasive procedures. Since extracellular vesicles (EVs) are promising candidates as indicators for diagnosis of various diseases, this study aimed to identify serum EV microRNAs (miRNAs) as potential biomarkers for AR in patients subjected to LT. We collected clinical information and serum samples from the liver transplant recipients with and without AR (non-AR). EVs from the serum were isolated via ultracentrifugation and identified using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. EV RNA was extracted and sequenced on an Illumina HiSeq 2500/2000 platform to identify differentially expressed miRNAs between the groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the target gene candidates of the differentially expressed miRNAs to test their functions in biological systems. Then, we validated 12 differentially expressed miRNAs by quantitative real-time PCR. The results demonstrated that 614 EV miRNAs were significantly altered (387 up regulated and 227 down regulated) between non-AR and AR patients. GO enrichment analysis revealed that these target genes were related to cellular processes, single-organism processes, biological regulation, metabolic processes, cells, cell parts, protein-binding processes, nucleoid binding, and catalytic activity. Furthermore, KEGG pathway analysis demonstrated that the target genes of the differentially expressed miRNAs were primarily involved in ubiquitin-mediated proteolysis, lysosomes, and protein processing in the endoplasmic reticulum. miR-223 and let-7e-5p in AR patients were significantly up-regulated compared to those in non-AR patients, whereas miR-199a-3p was significantly down-regulated, which was consistent with sequencing results. The expression of serum EV miRNAs (up-regulated: miR-223 and let-7e-5p and miR-486-3p; down regulated: miR-199a-3p, miR-148a-3p and miR-152-3p) in AR patients was significantly different from that in non-AR patients, and these miRNAs can serve as promising diagnostic biomarkers for AR in patients subjected to liver transplant.

7.
J Proteome Res ; 21(8): 1876-1893, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35786973

ABSTRACT

Gastrointestinal (GI) cancers constitute the largest portion of all human cancers, and the most prevalent GI cancers in China are colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC). Exosomes are nanosized vesicles containing proteins, lipids, glycans, and nucleic acid, which play important roles in the tumor microenvironment and progression. Aberrant glycosylation is closely associated with GI cancers; however, little is known about the glycopattern of the exosomes from GI cancer cells. In this study, glycopatterns of HCC, CRC, and GC cell lines and their exosomes were detected using lectin microarrays. For all exosomes, (GlcNAcß1-4)n and Galß1-4GlcNAc (DSA) were the most abundant glycans, but αGalNAc and αGal (GSL-II and SBA) were the least. Different cancers had various characteristic glycans in either cells or exosomes. Glycans altered in cell-derived exosomes were not always consistent with the host cells in the same cancer. However, Fucα1-6GlcNAc (core fucose) and Fucα1-3(Galß1-4)GlcNAc (AAL) were altered consistently in cells and exosomes although they were decreased in HCC and CRC but increased in GC. The study drew the full-scale glycan fingerprint of cells and exosomes related to GI cancer, which may provide useful information for finding specific biomarkers and exploring the underlying mechanism of glycosylation in exosomes.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Gastrointestinal Neoplasms , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line , Exosomes/metabolism , Gastrointestinal Neoplasms/metabolism , Glycoproteins/metabolism , Humans , Liver Neoplasms/metabolism , Polysaccharides/metabolism , Tumor Microenvironment
8.
J Mol Neurosci ; 72(6): 1274-1292, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35412111

ABSTRACT

The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Extracellular vesicles (EVs) are cell-derived nano-sized vesicles, carrying nucleic acids, proteins, lipids, and other bioactive substances. As reported, serum neural cell adhesion molecule L1 (L1CAM)-captured EVs (LCEVs) can provide reliable biomarkers for neurological diseases; however, little is known about the LCEVs in children with ASD. The study enrolled 100 children with ASD (2.5-6 years of age; 90 males) and 60 age-matched TD children (54 males) as control. The serum sample was collected and pooled into five ASD subgroups and three TD subgroups (n = 20). LCEVs were isolated and characterized meticulously. Whole-transcriptome of LCEVs was analyzed by lncRNA microarray and RNA-sequencing. All raw data was submitted on GEO Profiles, and GEO accession numbers is GSE186493. RNAs expressed differently in LCEVs from ASD sera vs. TD sera were screened, analyzed, and further validated. A total of 1418 mRNAs, 1745 lncRNAs, and 11 miRNAs were differentially expressed, and most of them were downregulated in ASD. Most RNAs were involved in neuron- and glycan-related networks implicated in ASD. The levels of EDNRA, SLC17A6, HTR3A, OSTC, TMEM165, PC-5p-139289_26, and hsa-miR-193a-5p were validated in at least 15 ASD and 15 TD individual serum samples, which were consistent with the results of transcriptome analysis. In conclusion, whole-transcriptome analysis of serum LCEVs reveals neural and glycosylation changes in ASD, which may help detect predictive biomarkers and molecular mechanisms of ASD, and provide reference for diagnoses and therapeutic management of the disease.


Subject(s)
Autism Spectrum Disorder , Cation Transport Proteins , Extracellular Vesicles , MicroRNAs , Neural Cell Adhesion Molecule L1 , Aged, 80 and over , Antiporters/genetics , Antiporters/metabolism , Biomarkers/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Child , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Gene Expression Profiling , Glycosylation , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Cell Adhesion Molecule L1/genetics
9.
Aging (Albany NY) ; 14(4): 1767-1781, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35183057

ABSTRACT

Long non-coding RNAs (lncRNAs) are of importance in the genesis and progression of gastric cancer (GC). GPC5-AS1 is a novel lncRNA associated with methyl-CpG-binding protein 2 (MeCP2), identified in our previous microarray analysis; however, the role of GPC5-AS1 in GC remains unknown. In the present study, we demonstrate that GPC5-AS1 is downregulated in GC cells and tissues, and this aberrant expression is regulated by MeCP2 through CpG site binding in the promoter region. Importantly, we also demonstrate that GPC5-AS1 overexpression suppresses cell proliferation, colony formation, and cell cycle transition; induces apoptosis in vitro; and inhibits tumorigenicity in vivo. The expression of the controversial gene GPC5 was downregulated in GC tissues, and elevated GPC5 level could inhibit GC cell growth. Mechanistically, we demonstrated that GPC5-AS1 stabilizes GPC5 mRNA by acting as a molecular sponge for miR-93 and miR-106a, thereby reducing GC tumor progression. In conclusion, our results suggest that GPC5-AS1 may play a pivotal role in GC and serve as a potential diagnostic biomarker and a powerful therapeutic target for GC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glypicans/genetics , Glypicans/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger , Stomach Neoplasms/pathology
10.
Cancer Cell Int ; 22(1): 86, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35180871

ABSTRACT

BACKGROUND: Increasing evidence suggests that aberrant methylation is involved in 5-fluorouracil (5-FU) resistance in gastric cancer (GC). Our previous work has identified that Methyl-CpG binding protein 2 (MeCP2) promotes GC progression by binding to the methylation sites of promoter regions of specific genes to affect the downstream signaling pathways. However, the function and molecular mechanisms of MeCP2 in GC 5-FU resistance remain unclear. METHODS: We detected the expression of MeCP2 in 5-FU-resistant GC cells and examined cell behaviors when MeCP2 was silenced. The molecular mechanisms were explored through chromatin immunoprecipitation (ChIP)-qRT-PCR, luciferase reporter assay, clinical tissue samples analysis, and in vivo tumorigenicity assay. RESULTS: MeCP2 was up-regulated in 5-FU-resistant GC cells. Knockdown of MeCP2 enhanced the sensitivity of the cells to 5-FU. Moreover, MeCP2 promoted NOX4 transcription in the cells by binding to the promoter of NOX4. Silencing NOX4 rescued the inductive effect of MeCP2 overexpression on 5-FU sensitivity of GC cells and reduced the expression of NOX4 and PKM2 in MeCP2 overexpressed 5-FU-resistant GC cells. In addition, our in vivo experiments demonstrated that MeCP2 knockdown enhanced 5-FU sensitivity in tumors. CONCLUSION: MeCP2 confers 5-FU resistance in GC cells via upregulating the NOX4/PKM2 pathway, which may lead to a promising therapeutic strategy for GC.

11.
Int J Biol Macromol ; 187: 892-902, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34331982

ABSTRACT

N-glycosylation is a major post-translational modification of proteins and involved in many diseases, however, the state and role of N-glycosylation in cartilage degeneration of osteonecrosis of femoral head (ONFH) remain unclear. The aim of this study is to identify the glycoproteins of ONFH hip cartilage. Cartilage tissues were collected from nine patients with ONFH and nine individuals with traumatic femoral neck fracture. Cartilage glycoproteins were identified by glycoproteomics based on LC-MS/MS. The differentially N-glycoproteins including glycosites were identified in ONFH and controls. A total of 408 N-glycoproteins with 444 N-glycosites were identified in ONFH and control cartilage. Among them, 104 N-glycoproteins with 130 N-glycosites were significantly differential in ONFH and control cartilage, which including matrix-remodeling-associated protein 5, prolow-density lipoprotein receptor-related protein 1, clusterin and lysosome-associated membrane glycoprotein 2. Gene Ontology analysis revealed the significantly differential glycoproteins mainly belonged to protein metabolic process, single-multicellular organism process, proteolysis, biological adhesion and cell adhesion. KEGG pathway and protein-protein interaction analysis suggested that the significantly differential glycoproteins were associated with PI3K-Akt signalling pathway, ECM-receptor interaction, protein processing in the endoplasmic reticulum and N-glycan biosynthesis. This information provides substantial insight into the role of protein glycosylation in the development of cartilage degeneration of ONFH patients.


Subject(s)
Cartilage, Articular/chemistry , Femur Head Necrosis/metabolism , Glycomics , Glycoproteins/analysis , Hip Joint/chemistry , Aged , Case-Control Studies , Chromatography, Liquid , Databases, Protein , Female , Femur Head Necrosis/diagnosis , Gene Ontology , Glycosylation , Humans , Male , Middle Aged , Protein Interaction Maps , Protein Processing, Post-Translational , Signal Transduction , Tandem Mass Spectrometry
12.
Mol Oncol ; 15(11): 3147-3163, 2021 11.
Article in English | MEDLINE | ID: mdl-34028973

ABSTRACT

Homeobox D3 (HOXD3), a member of the homeobox family, was described to regulate tumorigenesis, invasion, metastasis, and angiogenesis in various tumor types. However, the molecular mechanisms regulating HOXD3 during hepatocellular carcinoma (HCC) migration, invasion, and angiogenesis remain elusive. In this study, we demonstrated that HOXD3 expression is enhanced by the binding of methyl-CpG-binding protein 2 (MeCP2), a methyl-CpG binding protein, together with CREB1to the hypermethylated promoter of HOXD3. Inhibition of HOXD3 eliminated the tumorigenic effects of MeCP2 on HCC cells. Furthermore, HOXD3 directly targeted the promoter region of heparin-binding epidermal growth factor (HB-EGF) via the EGFR-ERK1/2 cell signaling pathway and promoted invasion, metastasis, and angiogenesis of HCC in vitro and in vivo. Additionally, elevated expression of MeCP2, CREB1, and HB-EGF in HCC correlated with a poor survival rate. Our findings reveal the function of the MeCP2/HOXD3/HB-EGF regulatory axis in HCC, rendering it an attractive candidate for the development of targeted therapeutics and as a potential biomarker in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Homeodomain Proteins , Liver Neoplasms , Transcription Factors , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Heparin-binding EGF-like Growth Factor/genetics , Heparin-binding EGF-like Growth Factor/metabolism , Homeodomain Proteins/genetics , Humans , Liver Neoplasms/pathology , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Methylation , Promoter Regions, Genetic , Transcription Factors/genetics
13.
Redox Biol ; 36: 101644, 2020 09.
Article in English | MEDLINE | ID: mdl-32863210

ABSTRACT

Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, tanshinol borneol ester (DBZ), possesses anti-inflammatory and anti-atherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-κB activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt(Ser473) (activation) and p-GSK3ß(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3ß markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt(Ser473)/GSK3ß(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Brain Ischemia/drug therapy , Brain Ischemia/genetics , Glycogen Synthase Kinase 3 beta/genetics , Lipopolysaccharides/toxicity , Mice , Microglia , NF-E2-Related Factor 2/genetics , NF-kappa B , Proto-Oncogene Proteins c-akt/genetics , Rats , Stroke/drug therapy
14.
Mycoses ; 63(11): 1215-1225, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32783251

ABSTRACT

BACKGROUND: Current available treatment modes against dermatophytoses are often tedious and sometimes unsatisfactory. As an emerging and promising approach, antimicrobial photodynamic therapy (aPDT) attracts much attention in the treatment of superficial or localised infections. OBJECTIVES: This work investigated the photodynamic efficacy and effects of haematoporphyrin monomethyl ether (HMME) on microconidia of Trichophyton rubrum in vitro. METHODS: The photodynamic killing efficacy of HMME on microconidia of two T rubrum strains was assessed by MTT assay. The effects of HMME-mediated aPDT on the growth of T rubrum and cellular structure of microconidia were also investigated. Confocal laser scanning microscopy (CLSM) and flow cytometry were employed to study the intracellular localisation of HMME and generation of reactive oxygen species (ROS). RESULTS: HMME showed no obvious toxicity in the dark, but after light irradiation it inactivated the T rubrum microconidia in a light energy dose-dependent manner, and inhibited the growth of T rubrum. CLSM demonstrated that HMME initially bound to the cell envelop and entered into the cell after light irradiation. HMME-mediated aPDT also damaged the cell cytoplasm and increased the accumulation of intracellular ROS, resulting in cell death. CONCLUSIONS: The results suggested that HMME-mediated aPDT had potential to be used in the treatment of superficial infections caused by T rubrum.

15.
Cell Prolif ; 53(8): e12835, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32557953

ABSTRACT

OBJECTIVES: HOXD3 is associated with progression of multiple types of cancer. This study aimed to identify the association of YY1 with HOXD3-ITGA2 axis in the progression of hepatocellular carcinoma. MATERIALS AND METHODS: Bioinformatics assay was used to identify the effect of YY1, HOXD3 and ITGA2 expression in HCC tissues. The function of YY1 and HOXD3 in HCCs was determined by qRT-PCR, MTT, apoptosis, Western blotting, colony formation, immunohistochemistry, and wound-healing and transwell invasion assays. The relationship between YY1 and HOXD3 or HOXD3 and ITGA2 was explored by RNA-Seq, ChIP-PCR, dual luciferase reports and Pearson's assays. The interactions between YY1 and HDAC1 were determined by immunofluorescence microscopy and Co-IP. RESULTS: Herein, we showed that the expression of YY1, HOXD3 and ITGA2 associated with the histologic and pathologic stages of HCC. Moreover, YY1, recruiting HDAC1, can directly target HOXD3 to regulate progression of HCCs. The relationship between YY1 and HOXD3 was unknown until uncovered by our present investigation. Furthermore, HOXD3 bound to promoter region of ITGA2 and up-regulated the expression, thus activating the ERK1/2 signalling and inducing HCCs proliferation, metastasis and migration in the vitro and vivo. CONCLUSIONS: Therefore, HOXD3, a target of YY1, facilitates HCC progression via activation of the ERK1/2 signalling by promoting ITGA2. This finding provides a new whole way to HCC therapy by serving YY1-HOXD3-ITGA2 regulatory axis as a potential therapeutic target for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone Deacetylase 1/metabolism , Homeodomain Proteins/metabolism , Liver Neoplasms/genetics , Transcription Factors/metabolism , YY1 Transcription Factor/metabolism , Apoptosis/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Histone Deacetylase 1/genetics , Humans , RNA, Long Noncoding/metabolism
16.
Cancer Gene Ther ; 27(6): 461-472, 2020 06.
Article in English | MEDLINE | ID: mdl-31303644

ABSTRACT

MicroRNAs (miRNAs) play critical roles in the tumorigenesis and progression of gastric cancer (GC). However, the biological function of miR-4268 in GC and its mechanism remain unclear. In the present study, qTR-PCR found that the expression of miR-4268 was significantly downregulated in GC tissues and cell lines. The overexpression of miR-4268 inhibited GC cell proliferation and the cell cycle G1/S phase transition, and induced cell apoptosis. In contrast, inhibition of miR-4268 promoted cell proliferation and G1-S transition, and suppressed cell apoptosis. Further analyses revealed that miR-4268 expression was negatively correlated with Rab6B expression in GC tissues. Rab6B was verified to be a direct target of miR-4268. Notably, silencing Rab6B resulted in the same biological effects in GC cells as those induced by overexpression of miR-4268. Importantly, both miR-4268 overexpression and Rab6B silence inhibited the AKT/JNK signaling pathways, which modulated cell cycle regulators (Cyclin D1 and CDK4). In contrast, inhibition of miR-4268 promoted the AKT/JNK signaling pathways. MiR-4268 overexpression also promoted the p38 MAPK signaling pathway. Taken together, miR-4268 suppresses GC cell proliferation through inhibiting the AKT/JNK signaling pathways by targeting Rab6B and induces cell apoptosis through promoting the p38 MAPK signaling pathway. Our findings indicate a tumor-suppressor role of miR-4268 in GC pathogenesis and the potential of miR-4268 in GC theropy.


Subject(s)
MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/metabolism , rab GTP-Binding Proteins/metabolism , Apoptosis/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Middle Aged , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transfection , rab GTP-Binding Proteins/genetics
17.
Cancer Gene Ther ; 27(10-11): 773-784, 2020 11.
Article in English | MEDLINE | ID: mdl-31831855

ABSTRACT

Myogenic differentiation 1 (MyoD1) is a transcription factor that promotes expression of muscle-specific genes. MyoD1 is expressed at significantly lower levels in gastric cancer (GC) tissues and cells, and it induces apoptosis in GC cells. However, functions for MyoD1 in GC cell migration and gene expression have not been documented. We show that knockdown of MyoD1 promoted migration and invasion of GC cells, whereas MyoD1 overexpression suppressed migration and invasion. We performed chromatin immunoprecipitation (ChIP)-sequencing to identify MyoD1 target genes in MKN-45 cells. The 2-kb upstream regions (Up2k) of the transcription start sites of 57 genes were probably bound by MyoD1. Six of these genes function in signaling pathways such as synthesis of glycosphingolipid biosynthesis-lacto and neolacto series. MyoD1 inhibited transcription of fucosyltransferase IV (FUT4) by binding directly to the FUT4 F3; this finding was validated by ChIP-quantitative PCR and a luciferase reporter assay. Ulex europaeus agglutinin I, which binds Fucα1-2Galß1-4GlcNAc, and Lewis antigens showed decreased binding to the plasma membrane of cells that overexpressed MyoD1. Knockdown of FUT4 mimicked MyoD1 overexpression by suppressing GC cell migration and invasion; this result implied that MyoD1 suppressed cell migration and invasion via inhibiting the FUT4/matrix metallopeptidase signaling pathway. In summary, this study demonstrated that MyoD1 suppresses migration and invasion of GC cells by directly binding to the F3 region in the FUT4 Up2k and inhibiting FUT4/type II Lewis antigen expression.


Subject(s)
Fucosyltransferases/metabolism , MyoD Protein/metabolism , Stomach Neoplasms/genetics , Animals , Cell Movement , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Signal Transduction , Stomach Neoplasms/pathology , Transfection
18.
Sci Rep ; 8(1): 2431, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402992

ABSTRACT

Hepatocellular carcinoma (HCC), one of the most common aggressive tumors worldwide has a relatively high mortality rate among malignant tumors. MicroRNAs (miRNAs), acting as tumor suppressors, are involved in the regulation of invasion, metastasis, and angiogenesis of tumor cells. However, a potential role for miR-203a in HCC has not been described yet. In this study, we show that miR-203a markedly suppresses HCC cell migration, invasion, and angiogenesis. In addition, the transcription factor HOXD3 appears to be a direct target of miR-203a. HOXD3 knockdown substantially decreased HCC cell migration, invasion, and angiogenesis, effects similar to those seen for miR-203a expression. Rescuing the function of HOXD3 attenuated the effect of miR-203a overexpression in HCC cells. Furthermore, HOXD3 can directly target the promoter region of VEGFR and increase VEGFR expression. Taken together, our findings indicate that miR-203a inhibits HCC cell invasion, metastasis, and angiogenesis by negatively targeting HOXD3 and suppressing cell signaling through the VEGFR pathway, suggesting that miR-203a might represent a potential therapeutic target for HCC intervention.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diffusion Chambers, Culture , Hepatocytes/metabolism , Hepatocytes/pathology , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Plasmids/chemistry , Plasmids/metabolism , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Transcription Factors , Vascular Endothelial Growth Factor Receptor-1/metabolism
19.
Proc Natl Acad Sci U S A ; 114(31): 8360-8365, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716912

ABSTRACT

Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.


Subject(s)
Blood Platelets/metabolism , Galactosyltransferases/genetics , Kupffer Cells/metabolism , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Animals , Asialoglycoprotein Receptor/metabolism , Hepatocytes/metabolism , Homeostasis/physiology , Lectins, C-Type/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Thrombocytopenia/pathology
20.
Sci Rep ; 7: 46041, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28485374

ABSTRACT

The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Glycosylation modified as many as 70% of all human proteins can sensitively reflect various pathological changes. However, little is known about the alterations of glycosylation and glycoproteins in ASD. In this study, serum glycopattern and the maackia amurensis lectin-II binding glycoproteins (MBGs) in 65 children with ASD and 65 age-matched typically developing (TD) children were compared by using lectin microarrays and lectin-magnetic particle conjugate-assisted LC-MS/MS analyses. Expression of Siaα2-3 Gal/GalNAc was significantly increased in pooled (fold change = 3.33, p < 0.001) and individual (p = 0.009) serum samples from ASD versus TD children. A total of 194 and 217 MGBs were identified from TD and ASD sera respectively, of which 74 proteins were specially identified or up-regulated in ASD. Bioinformatic analysis revealed abnormal complement cascade and aberrant regulation of response-to-stimulus that might be novel makers or markers for ASD. Moreover, increase of APOD α2-3 sialoglycosylation could sensitively and specifically distinguish ASD samples from TD samples (AUC is 0.88). In conclusion, alteration of MBGs expression and their sialoglycosylation may serve as potential biomarkers for diagnosis of ASD, and provide useful information for investigations into the pathogenesis of ASD.


Subject(s)
Autism Spectrum Disorder/blood , Glycoproteins/blood , Lectins/metabolism , Maackia/metabolism , Amino Acid Motifs , Amino Acid Sequence , Case-Control Studies , Child , Child, Preschool , Computational Biology , Female , Gene Ontology , Glycoproteins/chemistry , Glycosylation , Humans , Lectins/chemistry , Male , Microarray Analysis , Peptides/chemistry , Protein Binding , Protein Interaction Maps , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...