Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 850087, 2022.
Article in English | MEDLINE | ID: mdl-36033851

ABSTRACT

Hepatitis B virus (HBV) infection is still a serious public health problem worldwide. Antiviral therapies such as interferon and nucleos(t)ide analogs efficiently control HBV replication, but they cannot eradicate chronic hepatitis B (CHB) because of their incapacity to eliminate endocellular covalently closed circular DNA (cccDNA). Thus, there is a necessity to develop new strategies for targeting cccDNA. As cccDNA is difficult to clear, transcriptional silencing of cccDNA is a possible effective strategy. HBx plays a vitally important role in maintaining the transcriptional activity of cccDNA and it could be a target for blocking the transcription of cccDNA. To screen new drugs that may contribute to antiviral therapy, the ability of 2,000 small-molecule compounds to inhibit HBx was examined by the HiBiT lytic detection system. We found that the macrolide compound rapamycin, which is clinically used to prevent acute rejection after organ transplantation, could significantly reduce HBx protein expression. Mechanistic studies demonstrated that rapamycin decreased the stability of the HBx protein by promoting its degradation via the ubiquitin-proteasome system. Moreover, rapamycin inhibited HBV RNA, HBV DNA, and cccDNA transcription levels in HBV-infected cells. In addition, HBx deficiency abrogated the inhibition of cccDNA transcription induced by rapamycin. Similar results were also confirmed in a recombinant cccDNA mouse model. In summary, we report a new small-molecule, rapamycin, which targets HBx to block HBV cccDNA transcription and inhibit HBV replication. This approach can identify new strategies to cure CHB.

2.
Front Immunol ; 13: 871558, 2022.
Article in English | MEDLINE | ID: mdl-35784274

ABSTRACT

HBV is strongly associated with HCC development and DEAD-box RNA helicase 17 (DDX17) is a very important member of the DEAD box family that plays key roles in HCC development by promoting cancer metastasis. However, the important role of DDX17 in the pathogenesis of HBV-related HCC remains unclear. In this study, we investigated the role of DDX17 in the replication of HBV and the development of HBV-associated HCC. Based on data from the GEO database and HBV-infected cells, we found that DDX17 was upregulated by the HBV viral protein X (HBx). Mechanistically, increased DDX17 expression promoted HBV replication and transcription by upregulating ZWINT. Further study showed that DDX17 could promote HBx-mediated HCC metastasis. Finally, the promotive effect of DDX17 on HBV and HBV-related HCC was confirmed in vivo. In summary, the results revealed the novel role of DDX17 in the replication of HBV and the metastasis of HBV-associated HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinogenesis , Carcinoma, Hepatocellular/etiology , Cell Transformation, Neoplastic , DEAD-box RNA Helicases/genetics , Hepatitis B virus , Humans , Liver Neoplasms/etiology
3.
Front Pharmacol ; 13: 837115, 2022.
Article in English | MEDLINE | ID: mdl-35721154

ABSTRACT

Current anti-HBV therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure, inducing hepatitis B surface antigen (HBsAg) loss in very few patients. Notably, the level of HBsAg has been established as an accurate indicator to evaluate the drug efficacy and predict the disease prognosis, thus exploring a novel drug targeting HBsAg will be of great significance. Herein, by screening 978 compounds from an FDA-approved drug library and determining the inhibitory function of each drug on HBsAg level in HepG2.2.15 cells supernatant, we identified that pimobendan (Pim) has a powerful antiviral activity with relatively low cytotoxicity. The inhibitory effect of Pim on HBsAg as well as other HBV markers was validated in HBV-infected cell models and HBV-transgenic mice. Mechanistically, real-time PCR and dual-luciferase reporter assay were applied to identify the partial correlation of transcription factor CAAT enhancer-binding protein α (C/EBPα) with the cccDNA transcription regulated by Pim. This indicates Pim is an inhibitor of HBV transcription through suppressing HBV promoters to reduce HBV RNAs levels and HBsAg production. In conclusion, Pim was identified to be a transcription inhibitor of cccDNA, thereby inhibiting HBsAg and other HBV replicative intermediates both in vitro and in vivo. This report may provide a promising lead for the development of new anti-HBV agent.

4.
Front Microbiol ; 12: 795388, 2021.
Article in English | MEDLINE | ID: mdl-35140694

ABSTRACT

Hepatitis B virus (HBV) infection remains a major health problem worldwide. Sufficient maintenance of the HBV covalently closed circular DNA (cccDNA), which serves as a template for HBV transcription, is responsible for the failure of antiviral therapies. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation and methylation of cccDNA-bound histone 3 (H3) and histone 4 (H4), the potential contributions of histone succinylation and related host factors remain obscured. Here, by screening a series of succinyltransferases and desuccinylases, we identified KAT2A as an important host factor of HBV transcription and replication. By using HBV-infected cells and mouse models with HBV infection, KAT2A was found to affect the transcriptional activity of cccDNA but did not affect cccDNA production. Mechanism studies showed that KAT2A is mainly located in the nucleus and could bind to cccDNA through interaction with HBV core protein (HBc). Moreover, we confirmed histone H3K79 succinylation (H3K79succ) as a histone modification on cccDNA minichromosome by using the cccDNA ChIP-Seq approach. Importantly, KAT2A silencing specifically reduced the level of cccDNA-bound succinylated H3K79. In conclusion, KAT2A promotes HBV transcription and replication through epigenetic machinery, and our findings may provide new insight into the treatment of HBV infection.

5.
Clin Sci (Lond) ; 134(22): 3007-3022, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33103728

ABSTRACT

Hepatitis B virus (HBV) infection remains a global public health problem. Nearly 257 million people worldwide have been infected with HBV, resulting in 887,000 people dying of cirrhosis or liver cancer caused by chronic hepatitis B (CHB) annually. Therefore, identification of new targets against HBV is urgently needed. Long noncoding RNAs (LncRNAs) have gained widespread attention in recent years due to their function in cancer, inflammation and other diseases. Notably, a growing number of lncRNAs have been found to play a role in HBV development. In the present study, we first identified a famous lncRNA, HOTAIR, which was significantly up-regulated in HBV-infected cells and PBMCs from CHB patients. Furthermore, we evaluated the clinical relevance of HOTAIR in 20 CHB patients and found that higher levels of HOTAIR expression were associated with higher ALT/AST levels and were positively correlated with HBsAg and HBV DNA levels. In addition, functional analysis showed that HOTAIR promoted HBV transcription and replication by elevating the activities of HBV promoters via modulation of the levels of cccDNA-bound SP1. In conclusion, our study reveals that HOTAIR expression is correlated with the clinicopathological and physiological characteristics of HBV. Thus, HOTAIR may serve as a novel HBV diagnostic and therapeutic biomarker based on its ability to facilitate HBV transcription and replication.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B virus/physiology , RNA, Long Noncoding/metabolism , Sp1 Transcription Factor/metabolism , Viral Transcription/genetics , Virus Replication/genetics , Adult , Female , Gene Regulatory Networks , Gene Silencing , Hep G2 Cells , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Humans , Male , Promoter Regions, Genetic/genetics
6.
Cell Commun Signal ; 17(1): 168, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31842909

ABSTRACT

BACKGROUND: Our previous study has demonstrated that NAD(P)H: quinone oxidoreductase 1 (NQO1) is significantly upregulated in human liver cancer where it potentiates the apoptosis evasion of liver cancer cell. However, the underlying mechanisms of the oncogenic function of NQO1 in HCC have not been fully elucidated. METHODS: Expression of NQO1, SIRT6, AKT and X-linked inhibitor of apoptosis protein (XIAP) protein were measured by western blotting and immunohistochemistry. Additionally, the interaction between NQO1 and potential proteins were determined by immunoprecipitation assays. Furthermore, the effect of NQO1 and SIRT6 on tumor growth was determined in cell model and orthotopic tumor implantation model. RESULTS: We found that NQO1 overexpression in HCC enhanced SIRT6 protein stability via inhibiting ubiquitin-mediated 26S proteasome degradation. High level of SIRT6 reduced acetylation of AKT which resulted in increased phosphorylation and activity of AKT. Activated AKT subsequently phosphorylated anti-apoptotic protein XIAP at Ser87 which determined its protein stability. Reintroduction of SIRT6 or AKT efficiently rescued NQO1 knock-out-mediated inhibition of growth and induction of apoptosis. In orthotopic mouse model, NQO1 knock-out inhibited tumor growth and induced apoptosis while this effect was effectively rescued by SIRT6 overexpression or MG132 treatment partially. CONCLUSIONS: Collectively, these results reveal an oncogenic function of NQO1 in sustaining HCC cell proliferation through SIRT6/AKT/XIAP signaling pathway.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Proteasome Endopeptidase Complex/metabolism , Sirtuins/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/pathology , NAD(P)H Dehydrogenase (Quinone)/deficiency , Phosphorylation , Protein Stability , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...