Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(1): e2304821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658498

ABSTRACT

Quasi-2D (Q-2D) perovskites with typical varied n-phase structures deserve promising candidates in pursuing high-performance perovskite light-emitting diodes (PeLEDs). Whereas their weakness in precise n-phase distribution control disables the optical property of PeLEDs since the n = 1 phase is dominated by severe nonradiative recombination. Here, an effective phase distribution tailoring strategy is developed for pure blue PeLEDs by introducing taurine (TAU) into mixed halide Q-2D perovskites. The sulfonic acid group in TAU can coordinate with Pb2+ to suppress the formation of the n = 1 phase while promoting the growth of Q-2D perovskites into domains with the graded distribution of n = 2 and 3. The amino group in TAU forms hydrogen bonds with electronegative halide ions, suppressing the formation of halide vacancies and reducing the defect density in the Q-2D perovskite films. As a result, optimized blue Q-2D perovskite films boosted PLQY to 92%. Target blue PeLED  was endowed with a peak EQE of 14.82% (average 12.6%) at 475 nm and a maximum luminance of 1937 cd m-2 , which is among the reported high-level pure blue PeLEDs. This work demonstrates a feasible approach to regulate the phase distribution of Q-2D perovskites for high-performance blue PeLEDs.

2.
J Phys Chem Lett ; 12(35): 8507-8512, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34459608

ABSTRACT

Perovskite-based white-light-emitting devices (WLEDs) are expected to be the potential candidate for the next-generation lighting field due to their scalability and low-cost process. However, simple and adjustable WLED fabrication technology is in urgent need. Here, WLEDs with a single layer of perovskite quantum dots (PQDs) were constructed by combining Zn2+-doped CsPbBr3 PQDs with exciplex emission between poly(9-vinylcarbazole) (PVK) and ((1-phenyl-1H-benzimidazol-2-yl)benzene)) (TPBi). Zn2+-doped CsPbBr3 PQDs with polar ion shells were prepared by means of low temperature and post-treatment. The photoluminescence quantum yield (PLQY) can reach as high as 95.9% at the emission wavelength of 456 nm. The blue shift of its PL (∼60 nm) is much greater than that of other reported Zn2+-doped CsPbBr3 PQDs (5-10 nm), thus realizing the true blue-emission Zn2+-doped CsPbBr3 PQDs. As a result, just by controlling the thickness of TPBi, the adjustment of cold (CIE (0.2531, 0.2502)) and warm WLEDs (CIE (0.3561, 0.3562)) is realized for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL