Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Article in English | MEDLINE | ID: mdl-37953466

ABSTRACT

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Subject(s)
Extracellular Vesicles , Glioma , Humans , Endothelial Cells/metabolism , Glioma/genetics , Glioma/metabolism , Biological Transport , Extracellular Vesicles/metabolism , Myosin Type I/genetics , Myosin Type I/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
2.
Signal Transduct Target Ther ; 8(1): 424, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37935665

ABSTRACT

Glioma is the most prevalent brain tumor, presenting with limited treatment options, while patients with malignant glioma and glioblastoma (GBM) have poor prognoses. The physical obstacle to drug delivery imposed by the blood‒brain barrier (BBB) and glioma stem cells (GSCs), which are widely recognized as crucial elements contributing to the unsatisfactory clinical outcomes. In this study, we found a small molecule, gambogic amide (GA-amide), exhibited the ability to effectively penetrate the blood-brain barrier (BBB) and displayed a notable enrichment within the tumor region. Moreover, GA-amide exhibited significant efficacy in inhibiting tumor growth across various in vivo glioma models, encompassing transgenic and primary patient-derived xenograft (PDX) models. We further performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen to determine the druggable target of GA-amide. By the combination of the cellular thermal shift assay (CETSA), the drug affinity responsive target stability (DARTS) approach, molecular docking simulation and surface plasmon resonance (SPR) analysis, WD repeat domain 1 (WDR1) was identified as the direct binding target of GA-amide. Through direct interaction with WDR1, GA-amide promoted the formation of a complex involving WDR1, MYH9 and Cofilin, which accelerate the depolymerization of F-actin to inhibit the invasion of patient-derived glioma cells (PDCs) and induce PDC apoptosis via the mitochondrial apoptotic pathway. In conclusion, our study not only identified GA-amide as an effective and safe agent for treating glioma but also shed light on the underlying mechanisms of GA-amide from the perspective of cytoskeletal homeostasis.


Subject(s)
Glioma , Humans , Molecular Docking Simulation , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Cytoskeleton , Amides , Microfilament Proteins/therapeutic use
3.
Pharm Biol ; 59(1): 1566-1575, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34767490

ABSTRACT

CONTEXT: Gambogic amide (GA-amide) is a non-peptide molecule that has high affinity for tropomyosin receptor kinase A (TrkA) and possesses robust neurotrophic activity, but its effect on angiogenesis is unclear. OBJECTIVE: The study investigates the antiangiogenic effect of GA-amide on endothelial cells (ECs). MATERIALS AND METHODS: The viability of endothelial cells (ECs) treated with 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 µM GA-amide for 48 h was detected by MTS assay. Wound healing and angiogenesis assays were performed on cells treated with 0.2 µM GA-amide. Chicken eggs at day 7 post-fertilization were divided into the dimethyl sulfoxide (DMSO), bevacizumab (40 µg), and GA-amide (18.8 and 62.8 ng) groups to assess the antiangiogenic effect for 3 days. mRNA and protein expression in cells treated with 0.1, 0.2, 0.4, 0.8, and 1.2 µM GA-amide for 6 h was detected by qRT-PCR and Western blots, respectively. RESULTS: GA-amide inhibited HUVEC (IC50 = 0.1269 µM) and NhEC (IC50 = 0.1740 µM) proliferation, induced cell apoptosis, and inhibited the migration and angiogenesis at a relatively safe dose (0.2 µM) in vitro. GA-amide reduced the number of capillaries from 56 ± 14.67 (DMSO) to 20.3 ± 5.12 (62.8 ng) in chick chorioallantoic membrane (CAM) assay. However, inactivation of TrkA couldn't reverse the antiangiogenic effect of GA-amide. Moreover, GA-amide suppressed the expression of VEGF and VEGFR2, and decreased activation of the AKT/mTOR and PLCγ/Erk1/2 pathways. CONCLUSIONS: Considering the antiangiogenic effect of GA-amide, it might be developed as a useful agent for use in clinical combination therapies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Xanthones/pharmacology , Angiogenesis Inhibitors/administration & dosage , Animals , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Receptor, trkA/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xanthones/administration & dosage
4.
Cell Death Differ ; 28(6): 1941-1954, 2021 06.
Article in English | MEDLINE | ID: mdl-33469229

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies and cause of death from cancer in China. Previous studies showed that autophagy and apoptosis inhibition are critical for the survival of ESCC cells. However, the underlying mechanisms remain to be clarified. Recently, we found that PIWIL2, a novel cancer testis protein, is highly expressed in ESCC and associated with high T-stage and poor 5-year survival rate in patients. Our further study showed that PIWIL2 can directly bind to IKK and promote its phosphorylation, leading to phosphorylation of IκB and subsequently nuclear translocation of NF-κB for apoptosis inhibition. Meanwhile, PIWIL2 competitively inhibits binding of IKK to TSC1, and thus deactivate mTORC1 pathway which suppresses ULK1 phosphorylation and initiation of autophagy. The mouse xenograft model suggested that PIWIL2 can promote ESCC growth in an IKK-dependent manner. This present work firstly revealed that PIWIL2 can play a role in regulating autophagy and apoptosis, and is associated with poor prognosis in ESCC patients, providing novel insights into the roles of PIWIL2 in tumorigenesis.


Subject(s)
Argonaute Proteins/metabolism , Biomarkers, Tumor/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice , Mice, Nude , Middle Aged , Transfection
5.
Sci Total Environ ; 755(Pt 2): 142617, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33045602

ABSTRACT

Although benzothiazole and its derivatives (BTHs) are considered emerging contaminants in diverse environments and organisms, little information is available about their contamination profiles and health impact in ambient particles. In this study, an optimized method of ultrasound-assisted extraction coupled with the selected reaction monitoring (SRM) mode of GC-EI-MS/MS was applied to characterize and analyze PM2.5-bound BTHs from three cities of China (Guangzhou, Shanghai, and Taiyuan) during the winter of 2018. The total BTH concentration (ΣBTHs) in PM2.5 samples from the three cities decreased in the order of Guangzhou > Shanghai > Taiyuan, independently of the PM2.5 concentration. Despite the large variation in concentration of ΣBTHs in PM2.5, 2-hydroxybenzothiazole (OTH) was always the predominant compound among the PM2.5-bound BTHs and accounted for 50-80% of total BTHs in the three regions. Results from human exposure assessment and toxicity screening indicated that the outdoor exposure risk of PM2.5-bound BTHs in toddlers was much higher than in adults, especially for OTH. The developmental and reproduction toxicity of OTH was further explored in vivo and in vitro. Exposure of mouse embryonic stem cells (mESCs) to OTH for 48 h significantly increased the intracellular reactive oxygen species (ROS) and induced DNA damage and apoptosis via the functionally activating p53 expression. In addition, the growth and development of zebrafish embryos were found to be severely affected after OTH treatment. An overall metabolomics study was conducted on the exposed zebrafish larvae. The results indicated that exposure to OTH inhibited the phenylalanine hydroxylation reaction, which further increased the accumulation of toxic phenylpyruvate and acetylphenylalanine in zebrafish. These findings provide important insights into the contamination profiles of PM2.5-bound BTHs and emphasize the health risk of OTH.


Subject(s)
Air Pollutants , Tandem Mass Spectrometry , Air Pollutants/analysis , Air Pollutants/toxicity , Animals , Asian People , Benzothiazoles/toxicity , China , Cities , Environmental Monitoring , Humans , Particulate Matter/analysis , Particulate Matter/toxicity
6.
Biochem Biophys Res Commun ; 516(3): 819-824, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31262447

ABSTRACT

PIWIL2 belongs to the PIWI protein subfamily and is widely expressed in a variety of tumors. Previous studies have shown that PIWIL2 has the characteristics of oncogene. Recently we reported that PIWIL2 suppresses GSK3ß activity to regulate circadian rhythms through SRC-PI3K-AKT pathway. As GSK3ß is a key part of the ß-catenin destruction complex, it plays a vital role in regulating the degradation of ß-catenin. Besides, the activated ß-catenin/CyclinD1 pathway is involved in the proliferation of tumor cells. It is intriguing to investigate whether PIWIL2 regulates ß-catenin and downstream pathway. In this study, we found that PIWIL2 suppressed GSK3ß induced phosphorylation and ubiquitination of ß-catenin, and thus increased ß-catenin accumulation in the nucleus. By up-regulating ß-catenin and CyclinD1, PIWIL2 can promote cell cycle and proliferation in tumor cells. Taken together, our results revealed a novel function of PIWIL2 in regulating ß-catenin/CyclinD1 pathway in tumor cells, providing a new perspective for PIWIL2 as an oncogene.


Subject(s)
Argonaute Proteins/genetics , Cell Cycle/genetics , Cyclin D1/genetics , Gene Expression Regulation, Neoplastic , Protein Processing, Post-Translational , beta Catenin/genetics , Argonaute Proteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Proliferation , Cyclin D1/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , HeLa Cells , Hep G2 Cells , Humans , Phosphorylation , Protein Stability , Signal Transduction , Ubiquitination , beta Catenin/metabolism
7.
Cell Death Dis ; 10(2): 62, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683868

ABSTRACT

Circadian rhythm is an autoregulatory rhythm, which is sustained by various mechanisms. The nucleocytoplasmic shuttling of BMAL1 is essential for CLOCK translocation between cytoplasm and nucleus and maintenance of the correct pace of the circadian clock. Here we showed that RAE1 and NUP98 can promote the degradation of BMAL1 and CLOCK. Knockdown of RAE1 and NUP98 suppressed BMAL1 shuttling, leading to cytoplasm accumulation of CLOCK. Furthermore, Chip assay showed that knockdown of RAE1 and NUP98 can enhance the interaction between CLOCK: BMAL1 and E-box region in the promoters of Per2 and Cry1 while reducing its transcription activation activity. Our present study firstly revealed that RAE1 and NUP98 are critical regulators for BMAL1 shuttling.


Subject(s)
ARNTL Transcription Factors/metabolism , CLOCK Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Protein Multimerization , Proteolysis , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Nuclear Matrix-Associated Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nucleocytoplasmic Transport Proteins/genetics , Plasmids/genetics , Transcriptional Activation/genetics , Transfection , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL