Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1595, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452307

ABSTRACT

During plant evolution, there is genetic communication between organelle and nuclear genomes. A comparative analysis was performed on the organelle and nuclear genomes of the watermelon and melon. In the watermelon, chloroplast-derived sequences accounted for 7.6% of the total length of the mitochondrial genome. In the melon, chloroplast-derived sequences accounted for approximately 2.73% of the total mitochondrial genome. In watermelon and melon, the chloroplast-derived small-fragment sequences are either a subset of large-fragment sequences or appeared multiple times in the mitochondrial genome, indicating that these fragments may have undergone multiple independent migration integrations or emerged in the mitochondrial genome after migration, replication, and reorganization. There was no evidence of migration from the mitochondria to chloroplast genome. A sequence with a total length of about 73 kb (47%) in the watermelon chloroplast genome was homologous to a sequence of about 313 kb in the nuclear genome. About 33% of sequences in the watermelon mitochondrial genome was homologous with a 260 kb sequence in the nuclear genome. A sequence with a total length of about 38 kb (25%) in the melon chloroplast genome was homologous with 461 sequences in the nuclear genome, with a total length of about 301 kb. A 3.4 Mb sequence in the nuclear genome was homologous with a melon mitochondrial sequence. These results indicate that, during the evolution of watermelon and melon, a large amount of genetic material was exchanged between the nuclear genome and the two organelle genomes in the cytoplasm.


Subject(s)
Cell Nucleus/genetics , Citrullus/genetics , Cucurbitaceae/genetics , Genome, Chloroplast , Genome, Mitochondrial , Biological Evolution , DNA, Plant/chemistry , DNA, Plant/metabolism , Gene Transfer, Horizontal , Genome, Plant , Whole Genome Sequencing
2.
Mitochondrial DNA B Resour ; 5(3): 3176-3177, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-33458102

ABSTRACT

Cucumis melo L. is one of the most important fruit-type vegetables in the world. This genome is divided into a main loop and two small loops. The length of the main loop is 2,709,526 bp, and the two small loops are 149,555 bp and 47,592 bp long, respectively. There are 88 coding genes in the melon mitochondrial genome, including 40 protein-coding genes (which accounted for about 1.23% of the whole genome), 8 rRNAs, and 40 tRNAs. The total length of rRNAs and tRNAs spans 0.31% of the total genome sequence. Among the 88 mitochondrial coding genes, only 5 tRNAs were located into the second largest circular DNA molecule. The complete mitogenome sequence provided herein would help understand C. melo evolution.

SELECTION OF CITATIONS
SEARCH DETAIL