Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 198(2): 221-232, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38310363

ABSTRACT

Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.


Subject(s)
Cytochrome P-450 CYP1A1 , Lung Neoplasms , Humans , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Benzo(a)pyrene/toxicity , DNA Damage , Carcinogens/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/genetics
2.
Environ Pollut ; 336: 122367, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37573961

ABSTRACT

Benzo [a]pyrene (B [a]P) is a widespread environmental chemical pollutant that has been linked to the development of various diseases. However, the specific mechanism of action remains unclear. In this study, human bronchial epithelial 16HBE and BEAS-2B cells were exposed to B [a]P at 0-32 µM to assess the DNA-damaging effects. B [a]P exposure resulted in elevated expression of γ-H2AX, a marker of DNA damage. The m6A RNA methylation assay showed that B [a]P exposure increased the extent of m6A modification and the demethylase ALKBH5 played an integral role in this process. Moreover, the results of the comet assay and Western blot analysis showed an increase in m6A modification mediated by ALKBH5 that promoted DNA damage. Furthermore, the participation of a novel circular RNA, circ_0003552, was assessed by high-throughput sequencing under the condition of high m6A modification induced by B [a]P exposure. In subsequent functional studies, an interference/overexpression system was created to confirm that circ_0003552 participated in regulation of DNA damage. Mechanistically, circ_0003552 had an m6A binding site that could regulate its generation. This study is the first to report that B [a]P upregulated circ_0003552 through m6A modification, thereby promoting DNA damage. These findings revealed that epigenetics played a key role in environmental carcinogen-induced DNA damage, and the quantitative changes it brought might provide an early biomarker for future medical studies of genetic-related diseases and a new platform for investigations of the interaction between epigenetics and genetics.

3.
Toxicol Sci ; 192(1): 71-82, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36610987

ABSTRACT

Inhalation of carbon black nanoparticles (CBNPs) can impair lung tissue and cause DNA damage, but the epigenetic mechanism responsible for these effects is still unclear. We explored the role of circular RNAs (circRNAs) in DNA damage induced by CBNPs in the lung. Human bronchial epithelial cell lines (16HBE and BEAS-2B) were treated with 0, 5, 10, 20, 40, or 80 µg/ml CBNPs for 24, 48, and 72 h, and BALB/c mice were exposed to 8 and 80 µg/d CBNPs for 14 days to establish in vitro and vivo models of CBNP exposure, respectively. We found that CBNPs caused DNA double-strand breaks in the lung. Using high-throughput sequencing and quantitative real-time PCR to identify CBNP-related circRNAs, we identified a novel circRNA (circ_0089282) that was overexpressed in the CBNP-exposed group. We used gain-/loss-of-function approaches, RNA pulldown assays, and silver staining to explore the regulatory function of circ_0089282 and its interactions with targeted proteins. We found that circ_0089282 interference could increase CBNP-induced DNA damage, whereas overexpression resulted in the opposite. Circ_0089282 could directly bind to the fused in sarcoma (FUS) protein and positively regulate downstream DNA repair protein DNA ligase 4 (LIG4) through FUS. This regulatory effect of circRNA on DNA damage via promotion of LIG4 illustrated the interactions between genetics and epigenetics in toxicology.


Subject(s)
MicroRNAs , Nanoparticles , Mice , Animals , Humans , RNA, Circular/genetics , Soot/toxicity , Lung , DNA Damage , DNA Repair , Nanoparticles/toxicity , MicroRNAs/metabolism
4.
Environ Int ; 170: 107627, 2022 12.
Article in English | MEDLINE | ID: mdl-36399942

ABSTRACT

Benzo[a]pyrene (B[a]P) is a class I carcinogen and hazardous environmental pollutant with genetic toxicity. Understanding the molecular mechanisms underlying genetic deterioration and epigenetic alterations induced by environmental contaminants may contribute to the early detection and prevention of cancer. However, the role and regulatory mechanisms of circular RNAs (circRNAs) in the B[a]P-induced DNA damage response (DDR) have not been elucidated. In this study, human bronchial epithelial cell lines (16HBE and BEAS-2B) were exposed to various concentrations of B[a]P, and BALB/c mice were treated with B[a]P intranasally. B[a]P exposure was found to induce DNA damage and upregulate circular RNA hsa_circ_0057504 (circ_0057504) expression in vitro and in vivo. In addition, B[a]P upregulated TMEM194B mRNA and circ_0057504 expression through inhibition of DNA methyltransferase 3 alpha (DNMT3A) expression in vitro. Modulation (overexpression or knockdown) of circ_0057504 expression levels using a lentiviral system in human bronchial epithelial cells revealed that circ_0057504 promoted B[a]P-induced DNA damage. RNA pull-down and western blot assays showed that circ_0057504 interacted with non-POU domain-containing octamer-binding (NONO) and splicing factor proline and glutamine rich (SFPQ) proteins and regulated formation of the NONO-SFPQ protein complex. Thus, our findings indicate that circ_0057504 acts as a novel regulator of DNA damage in human bronchial epithelial cells exposed to B[a]P. The current study reveals novel insights into the role of circRNAs in the regulation of genetic damage, and describes the effect and regulatory mechanisms of circ_0057504 on B[a]P genotoxicity.


Subject(s)
Benzo(a)pyrene , DNA Damage , DNA Methyltransferase 3A , DNA-Binding Proteins , Lung Neoplasms , PTB-Associated Splicing Factor , RNA-Binding Proteins , Animals , Humans , Mice , Benzo(a)pyrene/toxicity , Bronchi/drug effects , Bronchi/metabolism , DNA Methyltransferase 3A/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , PTB-Associated Splicing Factor/metabolism , RNA-Binding Proteins/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Mice, Inbred BALB C
5.
Nat Cardiovasc Res ; 1(8): 732-747, 2022.
Article in English | MEDLINE | ID: mdl-35967457

ABSTRACT

Platelets have emerged as key inflammatory cells implicated in the pathology of sepsis, but their contributions to rapid clinical deterioration and dysregulated inflammation have not been defined. Here, we show that the incidence of thrombocytopathy and inflammatory cytokine release was significantly increased in patients with severe sepsis. Platelet proteomic analysis revealed significant upregulation of gasdermin D (GSDMD). Using platelet-specific Gsdmd-deficient mice, we demonstrated a requirement for GSDMD in triggering platelet pyroptosis in cecal ligation and puncture (CLP)-induced sepsis. GSDMD-dependent platelet pyroptosis was induced by high levels of S100A8/A9 targeting toll-like receptor 4 (TLR4). Pyroptotic platelet-derived oxidized mitochondrial DNA (ox-mtDNA) potentially promoted neutrophil extracellular trap (NET) formation, which contributed to platelet pyroptosis by releasing S100A8/A9, forming a positive feedback loop that led to the excessive release of inflammatory cytokines. Both pharmacological inhibition using Paquinimod and genetic ablation of the S100A8/A9-TLR4 signaling axis improved survival in mice with CLP-induced sepsis by suppressing platelet pyroptosis.

6.
Front Immunol ; 13: 922868, 2022.
Article in English | MEDLINE | ID: mdl-35983051

ABSTRACT

Background: Kawasaki disease (KD) is an acute vasculitis that may result in permanent coronary artery damage with unknown etiology. Endothelial cell (EC) dysfunction and platelet hyperactivity are the hallmarks of KD. Platelets are involved in the development of endothelial dysfunction. MiR-223 transferred by platelet microparticles (PMPs) has been found to involve in the functional regulation of endothelial cells in sepsis. However, the role of platelet-derived miR-223 in endothelial dysfunction has not yet been investigated in KD. Objectives: We seek to investigate the role of platelet-derived miR-223 in endothelial dysfunction of KD vasculopathy. Methods and results: Forty-five acute KD patients and 45 matched controls were randomly recruited in the study. When co-cultured with human coronary artery endothelial cells (HCAECs), KD platelets with higher levels of miR-223 were incorporated into HCAECs, resulting in the horizontal transfer of miR-223. Using KD platelets, PMPs, and platelet-releasate from the same amount of blood co-cultured with HCAECs, we found the increased expression of miR-223 in HCAECs was primarily derived from KD platelets, rather than PMPs or free miRNAs from platelet- releasate. KD platelet-derived miR-223 attenuated TNF-α induced intercellular cell adhesion molecule-1 (ICAM-1) expression in HCAECs. KD platelet-derived miR-223 also suppressed the monocyte adhesion to HCAECs. In vivo, platelet-specific miR-223 knockout (PF4-cre: miR-223flox/flox) C57BL/6 mice and miR-223flox/flox C57BL/6 mice were used. Using Lactobacillus casei cell wall extract (LCWE) to establish KD murine model, we showed that in LCWE-injected PF4-cre: miR-223flox/flox mice, deficiency of platelet-miR-223 exacerbates the medial thickening of the abdominal aorta, increased ICAM-1 expression with concomitant CD45+ inflammatory cells infiltration into the endothelium compared to LCWE-injected miR-223flox/flox mice. Conclusions: The horizontal transfer of platelet-derived miR-223 suppresses the expression of ICAM-1 in HCAECs, which at least in part attenuates leukocyte adhesion, thereby reducing endothelial damage in KD vasculitis.


Subject(s)
MicroRNAs , Mucocutaneous Lymph Node Syndrome , Animals , Case-Control Studies , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Monocytes/metabolism , Mucocutaneous Lymph Node Syndrome/complications , Tumor Necrosis Factor-alpha/metabolism
7.
Nat Cardiovasc Res ; 1(3): 223-237, 2022 Mar.
Article in English | MEDLINE | ID: mdl-37502132

ABSTRACT

Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.

8.
Arch Toxicol ; 95(10): 3235-3251, 2021 10.
Article in English | MEDLINE | ID: mdl-34402960

ABSTRACT

Fine particulate matter (PM2.5) has been shown to induce DNA damage. Circular RNAs (circRNAs) have been implicated in various disease processes related to environmental chemical exposure. However, the role of circRNAs in the regulation of DNA damage response (DDR) after PM2.5 exposure remains unclear. In this study, male ICR mice were exposed to PM2.5 at a daily mean concentration of 382.18 µg/m3 for 3 months in an enriched-ambient PM2.5 exposure system in Shijiazhuang, China, and PM2.5 collected form Shijiazhuang was applied to RAW264.7 cells at 100 µg/mL for 48 h. The results indicated that exposure to PM2.5 induced histopathological changes and DNA damage in the lung, kidney and spleen of male ICR mice, and led to decreased cell viability, increased LDH activity and DNA damage in RAW264.7 cells. Furthermore, circ_Cabin1 expression was significantly upregulated in multiple mouse organs as well as in RAW264.7 cells upon exposure to PM2.5. PM2.5 exposure also resulted in impairment of non-homologous end joining (NHEJ) repair via the downregulation of Lig4 or Dclre1c expression in vivo and in vitro. Importantly, circ_Cabin1 promoted PM2.5-induced DNA damage via inhibiting of NHEJ repair. Moreover, the expression of circ_Cabin1 and Lig4 or Dclre1c was strongly correlated in multiple mouse organs, as well as in the blood. In summary, our study provides a new perspective on circRNAs in the regulation of DDR after environmental chemical exposure.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA Damage/drug effects , Particulate Matter/toxicity , RNA, Circular/genetics , Animals , Cell Survival/drug effects , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics , Endonucleases/genetics , Male , Mice , Mice, Inbred ICR , Nuclear Proteins/genetics , RAW 264.7 Cells
9.
Front Mol Biosci ; 8: 774905, 2021.
Article in English | MEDLINE | ID: mdl-35071322

ABSTRACT

TRPM2 (transient receptor potential melastatin-2), a Ca2+ permeable, non-selective cation channel, is highly expressed in cancers and regulates tumor cell migration, invasion, and proliferation. However, no study has yet demonstrated the association of TRPM2 with the prognosis of cancer patients or tumor immune infiltration, and the possibility and the clinical basis of TRPM2 as a prognostic marker in cancers are yet unknown. In the current study, we first explored the correlation between the mRNA level of TRPM2 and the prognosis of patients with different cancers across public databases. Subsequently, the Tumor Immune Estimation Resource (TIMER) platform and the TISIDB website were used to assess the correlation between TRPM2 and tumor immune cell infiltration level. We found that 1) the level of TRPM2 was significantly elevated in most tumor tissues relative to normal tissues; 2) TRPM2 upregulation was significantly associated with adverse clinical characteristics and poor survival of kidney renal clear cell carcinoma (KIRC) patients; 3) the level of TRPM2 was positively related to immune cell infiltration. Moreover, TRPM2 was closely correlated to the gene markers of diverse immune cells; 4) a high TRPM2 expression predicted worse prognosis in KIRC based on different enriched immune cell cohorts; and 5) TRPM2 was mainly implemented in the T-cell activation process indicated by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In conclusion, TRPM2 can serve as a marker to predict the prognosis and immune infiltration in KIRC through the regulation of T-cell activation. The current data may provide additional information for further studies surrounding the function of TRPM2 in KIRC.

10.
Environ Int ; 143: 105976, 2020 10.
Article in English | MEDLINE | ID: mdl-32707273

ABSTRACT

Fine particulate matter (PM2.5) is one of the most important components of environmental pollutants, and is associated with pulmonary injury. However, the biological mechanisms of pulmonary damage caused by PM2.5 are poorly defined, especially the molecular pathways related to inflammation. Following system exposure to PM2.5 for 3 months in normal mice and in chronic obstructive pulmonary disease (COPD) model mice, it was found that PM2.5 exposure increased the expression of IL-1ß and IL-18 in lung tissues via NLRP3 activation, and these effects were more intense in COPD model mice. Circular RNA (circRNA) sequencing showed that the expression profiles of circRNAs were changed after PM2.5 exposure, and the positive roles of circBbs9 in inflammation induced by PM2.5 were verified. The circBbs9 knockdown alleviated PM2.5-induced inflammation via NLRP3 inflammasome inactivation, as well as IL-1ß and IL-18 inhibition in RAW264.7 cells, while overexpression of circBbs9 had the opposite effect. Bioinformatics and luciferase reporter assays showed that circBbs9 bound to microRNA-30e-5p (miR-30e-5p) and co-regulated the expression of Adar, a downstream target gene of miR-30e-5p. Taken together, these results revealed that PM2.5 induced pulmonary inflammation through NLRP3 inflammasome activation regulated by the circBbs9-miR-30e-5p-Adar pathway. Our findings provide a new target, circBbs9, for the assessment of lung inflammation and COPD exacerbation induced by PM2.5 exposure.


Subject(s)
Inflammasomes , Pneumonia , Animals , Inflammation/chemically induced , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/toxicity , Pneumonia/chemically induced , RNA, Circular
11.
Mol Cancer ; 19(1): 101, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493389

ABSTRACT

BACKGROUND: Lung cancer has high morbidity and mortality worldwide with non-small cell lung cancer (NSCLC) accounting for 85% of the cases. Therapies for lung cancer have relatively poor outcomes and further improvements are required. Circular RNAs have been reported to participate in the occurrence and progression of cancer. Information on the functions and mechanism of circRNAs in lung cancer is limited and needs more exploration. METHODS: We detected expression of genes and proteins by qPCR and western blot. Function of circSATB2 was investigated using RNA interference and overexpression assays. Location of circSATB2 was assessed by fluorescence in situ hybridization (FISH). Interaction of circSATB2, miR-326 and FSCN1 was confirmed by dual-luciferase reporter assay. RESULTS: Data from the investigation showed that circSATB2 was highly expressed in NSCLC cells and tissues. circSATB2 positively regulated fascin homolog 1, actin-bundling protein 1 (FSCN1) expression via miR-326 in lung cancer cells. Furthermore, circSATB2 can be transferred by exosomes and promote the proliferation, migration and invasion of NSCLC cells, as well as induce abnormal proliferation in normal human bronchial epithelial cells. Also, circSATB2 was highly expressed in serumal exosomes from lung cancer patients with high sensitivity and specificity for clinical detection and was related to lung cancer metastasis. CONCLUSIONS: circSATB2 participated in the progression of NSCLC and was differentially expressed in lung cancer tissue and serumal exosomes. circSATB2 may be potential biomarker for the diagnosis of NSCLC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/metabolism , Lung Neoplasms/pathology , Matrix Attachment Region Binding Proteins/genetics , MicroRNAs/genetics , Microfilament Proteins/metabolism , RNA, Circular/genetics , Transcription Factors/genetics , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/genetics , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Microfilament Proteins/genetics , Prognosis , Tumor Cells, Cultured
12.
Environ Int ; 141: 105755, 2020 08.
Article in English | MEDLINE | ID: mdl-32388272

ABSTRACT

Fine particulate matter (PM2.5) has been verified to augmented the incidence of pneumonia, asthma, pulmonary fibrosis, and other pulmonary diseases. Airway inflammation is the pathological basis of the respiratory system, and understanding the molecular mechanisms responsible for airway inflammation may thus support the diagnosis and treatment of respiratory diseases. In our study, human bronchial epithelial cells (BEAS-2B) were exposed to various concentrations of PM2.5 for 48 h. PM2.5 entered the cells, resulting in increased production of interleukin 6 (IL-6) and interleukin 8 (IL-8) and decreased the expression of circular RNA 406961 (circ_406961). Further, PM2.5 with a concentration of 75 µg/mL was applied to mechanism study. Functional experiments further confirmed that circ_406961 inhibited PM2.5-induced BEAS-2B cell inflammation. RNA pull-down and mass spectrometry showed that circ_406961 interacted with interleukin enhancer-binding factor 2 (ILF2), which could regulate phosphorylation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase 8 (MAPK8, JNK). Our studies showed that circ_406961 inhibited activation of STAT3/JNK pathways via interacting with ILF2 protein, thereby inhibiting the PM2.5-induced inflammatory reaction.


Subject(s)
MAP Kinase Signaling System , RNA, Circular , Bronchi , Epithelial Cells , Humans , Nuclear Factor 45 Protein , Particulate Matter/toxicity , STAT3 Transcription Factor
13.
Environ Pollut ; 258: 113749, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31864925

ABSTRACT

Long-term exposure to particulate matter 2.5 (PM2.5) is closely related to the occurrence and development of airway inflammation. Exploration of the role of PM2.5 in inflammation is the first step towards clarifying the harmful effects of particulate pollution. However, the molecular mechanisms underlying PM2.5-induced airway inflammation are yet to be fully established. In this study, we focused on the specific roles of non-coding RNAs (ncRNAs) in PM2.5-induced airway inflammation. In a human bronchial epithelial cell line, BEAS-2B, PM2.5 at a concentration of 75 µg/mL induced the inflammatory response. Microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed significant upregulation of circRNA104250 and lncRNAuc001.dgp.1 during the PM2.5-induced inflammatory response in this cell line. Data from functional analyses further showed that both molecules promote an inflammatory response. CircRNA104250 and lncRNAuc001.dgp.1 target miR-3607-5p and affect expression of interleukin 1 receptor 1 (IL1R1), which influences the nuclear factor κB (NF-κB) signaling pathway. In summary, we have uncovered an underlying mechanism of airway inflammation by PM2.5 involving regulation of ncRNA for the first time, which provides further insights into the toxicological effects of PM2.5.


Subject(s)
Air Pollutants/adverse effects , Epithelial Cells/drug effects , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Bronchi/cytology , Cell Line , Humans , Inflammation , NF-kappa B , Particulate Matter/adverse effects , Receptors, Interleukin-1 Type I
SELECTION OF CITATIONS
SEARCH DETAIL
...