Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Med ; 53(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38214344

ABSTRACT

Osteocyte function is critical for metabolism, remodelling and regeneration of bone tissue. In the present study, the roles of regulator of G protein signalling 18 (RGS18) were assessed in the regulation of osteocyte proliferation and bone formation. Target genes and signalling pathways were screened using the Gene Expression Omnibus (GEO) database and Gene Set Enrichment Analysis (GSEA). The function of RGS18 and the associated mechanisms were analysed by Cell Counting Kit 8 assay, 5­ethynyl­2'­deoxyuridine assay, flow cytometry, reverse transcription­quantitative PCR, western blotting and immunostaining. Overlap analysis of acutely injured subjects (AIS) and healthy volunteers (HVs) from the GSE93138 and GSE93215 datasets of the GEO database identified four genes: KIAA0825, ANXA3, RGS18 and LIPN. Notably, RGS18 was more highly expressed in peripheral blood samples from AIS than in those from HVs. Furthermore, RGS18 overexpression promoted MLO­Y4 and MC3T3­E1 cell viability, proliferation and S­phase arrest, but inhibited apoptosis by suppressing caspase­3/9 cleavage. Silencing RGS18 exerted the opposite effects. GSEA of GSE93138 revealed that RGS18 has the ability to regulate MAPK signalling. Treatment with the MEK1/2 inhibitor PD98059 reversed the RGS18 overexpression­induced osteocyte proliferation, and treatment with the ERK1/2 activator 12­O­tetradecanoylphorbol­13­acetate reversed the effects of RGS18 silencing on osteocyte proliferation. In conclusion, RGS18 may contribute to osteocyte proliferation and bone fracture healing via activation of ERK signalling.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Osteocytes , RGS Proteins , Humans , Apoptosis/genetics , Cell Proliferation/genetics , GTP-Binding Proteins , Signal Transduction , Animals , Mice , 3T3 Cells , RGS Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...