Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(48): e2303063, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415511

ABSTRACT

Nanoscale metal-organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T1 -weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r1 value of 4.55 mM-1 ·s-1 at the doping ratio of Gd : Zr = 1 : 1. Then, these isoreticular engineering studies provide feasible ways to facilitate the relaxation transfer in the second- and outer-sphere of the Gd(III)-doped Zr-oxo cluster for the relaxation respectively. Finally, these in vitro and in vivo MRI studies revealed that the Gd(III)-doped Zr-oxo cluster aggregated underlying the fcu-type framework surpasses its discrete molecular cluster for MRI. These results demonstrated that there is plenty of room inside MOFs for T1 -weighted MRI by reticular chemistry.

2.
Small ; 19(34): e2301894, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093185

ABSTRACT

Developing novel synthetic strategies to downsize metal-organic frameworks (MOFs) from polydisperse crystals to monodisperse nanoparticles is of great importance for their potential bioapplications. In this work, a novel synthetic strategy termed gelothermal synthesis is proposed, in which coordination polymer gel is first prepared and followed by a thermal reaction to give the monodisperse MOF nanoparticles. This novel synthetic strategy successfully leads to the isolation of Materials of Institute Lavoisier (MIL-88), Cu(II)-fumarate MOFs (CufumDMF), and Zeolitic Imidazolate Frameworks (ZIF-8) nanoparticles. Focused on MIL-88A, the studies reveal that the size can be well-tuned from nanoscale to microscale without significant changes in polydispersity index (PDI) even in the case of in situ metal substitution. A possible mechanism is consequently proposed based on extensive studies on the gelothermal condition including sol-gel chemistry, thermal condition, kinds of solvents, and so on. The unique advantages of monodisperse MIL-88A nanoparticles over polydisperse ones are further demonstrated in terms of in vitro magnetic resonance imaging (MRI), cellular uptake, and drug-carrying properties.

3.
Angew Chem Int Ed Engl ; 61(41): e202209499, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35918849

ABSTRACT

Immunomodulation has made remarkable progress in fighting infectious disease and cancer. Conventionally, immunomodulation largely relies on chemical/biochemical agents, which, unfortunately, suffer from sever off-target adverse effects. Recent insights into nano-bio interactions suggest that nanomaterials can directly participate in immunomodulation. A range of physical and chemical cues at the nano-bio interface have been harnessed to regulate diverse immuno-signaling for disease control and treatment. In this Minireview, we summarize recent studies on the physical and chemical cues enabled by intrinsic nanomaterials to trigger immunological signaling. First, we discuss physical cues mediated by surface topography, hydrophobicity, charge, and heat at the nano-bio interface for immunomodulation. Then, various nanomaterials enabled chemical cues, such as metal species and oxidative species are outlined. Finally, our perspectives on challenges and possible future directions are provided.


Subject(s)
Cues , Nanostructures , Immunomodulation , Metals , Oxidation-Reduction
4.
Bioorg Chem ; 117: 105405, 2021 12.
Article in English | MEDLINE | ID: mdl-34649154

ABSTRACT

Breast cancer is the cancer with the highest incidence all over the world. Phosphatidylinositol 3-kinase is an important regulator of intracellular signaling pathways, which is frequently mutated and overexpressed in majority of human breast cancers, and the inhibition of PI3K has been considered as a promising approach for the treatment of the cancer. Here, we report our design and synthesis of new 7-azaindole derivatives as PI3K inhibitors through the scaffold hopping strategy. By varying the groups at the 3-position of 7-azaindole, we identified a series of potent PI3K inhibitors, whose antiproliferative activities against two human breast cancer MCF-7 and MDA-MB-231 cell lines were evaluated. Representative derivatives FD2054 and FD2078 showed better activity than BKM120 in antiproliferation, reduced the levels of phospho-AKT and induced cell apoptosis. All these results suggested that FD2054 and FD2078 are potent PI3K inhibitors that could be considered as potential candidates for the development of anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Indoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemistry , MCF-7 Cells , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemistry
5.
Dalton Trans ; 48(21): 7100-7104, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30907401

ABSTRACT

Developing feasible ways to achieve tunable gate-opening pressure (Pgo) while minimizing the side effects on the adsorption capacity and enthalpy is greatly desired for flexible MOFs. In this work, we focused on solving this issue by cobalt substitution. We showed the successful modulation of the energy required for the reversible transformation of a soft paddle-wheel so that the whole framework presented a substitution-dependent Pgo for CO2 adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...