Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Toxicol Sci ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730545

ABSTRACT

Male fertility depends on normal pubertal development. Di(2-ethylhexyl) phthalate (DEHP) is a potent antiandrogen chemical, and exposure to DEHP during peripuberty can damage the developing male reproductive system, especially the testis. However, the specific cellular targets and differentiation processes affected by DEHP, which lead to testicular toxicity, remain poorly defined. Herein, we presented the first single-cell transcriptomic profile of the pubertal mouse testis following DEHP exposure. To carry out the experiment, two groups (n = 8 each) of three-week old male mice were orally administered 0.5% carboxymethylcellulose sodium salt or 100 mg/kg body weight DEHP daily from postnatal day 21 to 48, respectively. Using single-cell RNA sequencing, a total of 31 distinct cell populations were identified, notably, Sertoli and Leydig cells emerged as important targets of DEHP. DEHP exposure significantly decreased the proportions of Sertoli cell clusters expressing mature Sertoli markers (Sox9 and Ar), and selectively reduced the expression of testosterone synthesis genes in fetal Leydig cells. Through cell-cell interaction analyses, we observed changed numbers of interactions in Sertoli cells 1 (SCs1), Leydig cells 1 (LCs1) and interstitial macrophages (ITMs), and we also identified cell-specific ligand gene expressions in these clusters, such as Inha, Fyn, Vcam1, and Apoe. Complementary in vitro assays confirmed that DEHP directly reduced the expression of genes related to Sertoli cell adhesion and intercellular communication. In conclusion, peripubertal DEHP exposure reduced the number of mature Sertoli cells and may disrupt testicular steroidogenesis by affecting the testosterone synthesis genes in fetal Leydig cells rather than adult Leydig cells.

2.
Mol Cell Biochem ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795212

ABSTRACT

Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.

3.
World J Gastrointest Oncol ; 16(5): 2123-2140, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764835

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) regulate gene expression and play a critical role in cancer physiology. However, there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer (GC). AIM: To investigate the role and molecular mechanism of miRNA-145-5p (miR145-5p) in the progression of GC. METHODS: Real-time polymerase chain reaction (RT-PCR) was used to detect miRNA expression in human GC tissues and cells. The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays, respectively. Cell proliferation was measured using cell counting kit-8 and colony formation assays, and apoptosis was evaluated using flow cytometry. Expression of the epithelial-mesenchymal transition (EMT)-associated protein was determined by Western blot. Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system. Serpin family E member 1 (SERPINE1) expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining. The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis. The association between SERPINE1 and GC progression was also tested. A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p. The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice. RESULTS: GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA. Overexpression of miR-145-5p was associated with decreased GC cell proliferation, invasion, migration, and EMT, and these effects were reversed by forcing SERPINE1 expression. Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression. Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2 (ERK1/2). CONCLUSION: This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC. MiR-145-5p was found to affect GC cell proliferation, migration, and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.

4.
Microbiol Spectr ; : e0431223, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687068

ABSTRACT

Accurate species-level identification of Enterobacter cloacae complex (ECC) is crucial for related research. The classification of ECC is based on strain-to-strain phylogenetic congruence, as well as genomic features including average nucleotide identity (ANI) and digitalized DNA-DNA hybridization (dDDH). ANI and dDDH derived from whole-genome sequencing have emerged as a reliable metric for assessing genetic relatedness between genomes and are increasingly recognized as a standard for species delimitation. Up to now, there are two different classification methods for ECC. The first one categorizes E. hormaechei, a species within ECC, into five subspecies (E. hormaechei subsp. steigerwaltii, subsp. oharae, subsp. xiangfangensis, subsp. hoffmannii, and subsp. hormaechei). The second classifies E. hormaechei as three species: E. hormaechei, "E. xiangfangensis," "E. hoffmanii." While the former is well-accepted in the academic area, the latter may have a greater ability to distinguish different species of ECC. To assess the suitability of these identification criteria for clinical ECC isolates, we conducted a comprehensive analysis involving phylogenetic analysis, ANI and dDDH value alignment, virulence gene identification, and capsule typing on 256 clinical ECC strains isolated from the bloodstream. Our findings indicated that the method of categorizing E. hormaechei into five subspecies has better correlation and consistency with the molecular characteristics of clinical ECC isolates, as evidenced by phylogenetic analysis, virulence genes, and capsule typing. Therefore, the subspecies-based classification method appears more suitable for taxonomic assignments of clinical ECC isolates. IMPORTANCE: Standardizing taxonomy of the Enterobacter cloacae complex (ECC) is necessary for data integration across diverse studies. The study utilized whole-genome data to accurately identify 256 clinical ECC isolated from bloodstream infections using average nucleotide identity (ANI), digitalized DNA-DNA hybridization (dDDH), and phylogenetic analysis. Through comprehensive assessments including phylogenetic analysis, ANI and dDDH comparisons, virulence gene, and capsule typing of the 256 clinical isolates, it was concluded that the classification method based on subspecies exhibited better correlation and consistency with the molecular characteristics of clinical ECC isolates. In summary, this research contributes to the precise identification of clinical ECC at the species level and expands our understanding of ECC.

5.
Pest Manag Sci ; 80(6): 2710-2723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358029

ABSTRACT

BACKGROUND: Xanthomonas oryzae pv. oryzae (Xoo) is often considered one of the most destructive bacterial pathogens causing bacterial leaf blight (BLB), resulting in significant yield and cost losses in rice. In this study, a series of novel derivatives containing the isopropanolamine moiety linked to various substituted phenols and piperazines were designed, synthesized and screened. RESULTS: Antibacterial activity results showed that most compounds had good inhibitory effects on Xoo, among which compound W2 (EC50 = 2.74 µg mL-1) exhibited the most excellent inhibitory activity, and W2 also had a certain curative effect (35.89%) on rice compared to thiodiazole copper (TC) (21.57%). Scanning electron microscopy (SEM) results indicated that compound W2 could cause rupture of the Xoo cell membrane. Subsequently, proteomics and quantitative real-time polymerase chain reaction revealed that compound W2 affected the physiological processes of Xoo and may exert antibacterial activity by targeting the two-component system pathway. Interestingly, W2 upregulated Xoo's methyltransferase to impact on its pathogenicity. CONCLUSION: The present study offers a promising phenolic-piperazine-sopropanolamine compound as an innovative antibacterial strategy by specifically targeting the two-component system pathway and inducing upregulation of methyltransferase to effectively impact Xoo's pathogenicity. © 2024 Society of Chemical Industry.


Subject(s)
Anti-Bacterial Agents , Xanthomonas , Xanthomonas/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Phenols/pharmacology , Phenols/chemistry , Drug Design , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Oryza/microbiology , Plant Diseases/microbiology
6.
Article in English | MEDLINE | ID: mdl-37976965

ABSTRACT

Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , Takifugu/genetics , Takifugu/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Profiling , Transcriptome
7.
Mol Metab ; 78: 101836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949355

ABSTRACT

OBJECTIVE: Tumor cells hijack inflammatory mechanisms to promote their own growth. IL-6 is one of the major cytokines, and is frequently upregulated in tumors. The pentose phosphate pathway (PPP) generates the indispensable building blocks to produce various nucleotides. Here we aimed to determine whether and how PPP is timely tuned in response to IL-6 to support tumor growth. METHODS: Protein expression was examined by immunoblot. Protein interaction was examined by immunoprecipitation. Tumor cell proliferation in in vitro culture was examined by BrdU assay and colony formation assay. Tumor cell proliferation in mouse xenograft model was examined by Ki-67 staining. RESULTS: Here we show that the metabolic flux of PPP and enzymatic activity of glucose-6-phosphate dehydrogenase (G6PD) is rapidly induced under IL-6 treatment, without obvious changes in G6PD expression level. Mechanistically, Janus kinase 2 (JAK2) phosphorylates G6PD Y437 under IL-6 treatment, which accentuates G6PD enzymatic activity by promoting G6PD binding with its substrate G6P. Further, JAK2-dependent G6PD Y437 phosphorylation is required for IL-6-induced nucleotide biosynthesis and tumor cell proliferation, and is associated with the progression of oral squamous cell carcinoma. CONCLUSIONS: Our findings report a new mechanism implicated in the crosstalk between tumor cells and inflammatory microenvironment, by which JAK2-dependent activation of G6PD governs nucleotide synthesis to support tumor cell proliferation, thereby highlighting its value as a potential anti-tumor target.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Mice , Animals , Phosphorylation , Oxidoreductases , Interleukin-6 , Janus Kinase 2 , Glucose 1-Dehydrogenase , Phosphates , Nucleotides , Tumor Microenvironment
8.
J Microbiol ; 61(9): 821-836, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37824034

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common disease of endocrine-metabolic disorder, and its etiology remains largely unknown. The gut microbiota is possibly involved in PCOS, while the association remains unclear. The comprehensive analysis combining gut microbiota with PCOS typical symptoms was performed to analyze the role of gut microbiota in PCOS in this study. The clinical patients and letrozole-induced animal models were determined on PCOS indexes and gut microbiota, and fecal microbiota transplantation (FMT) was conducted. Results indicated that the animal models displayed typical PCOS symptoms, including disordered estrous cycles, elevated testosterone levels, and ovarian morphological change; meanwhile, the symptoms were improved after FMT. Furthermore, the microbial diversity exhibited disordered, and the abundance of the genus Ruminococcus and Lactobacillus showed a consistent trend in PCOS rats and patients. The microbiota diversity and several key genera were restored subjected to FMT, and correlation analysis also supported relevant conclusions. Moreover, LEfSe analysis showed that Gemmiger, Flexispira, and Eubacterium were overrepresented in PCOS groups. Overall, the results indicate the involvement of gut microbiota in PCOS and its possible alleviation of endocrinal and reproductive dysfunctions through several special bacteria taxa, which can function as the biomarker or potential target for diagnosis and treatment. These results can provide the new insights for treatment and prevention strategies of PCOS.


Subject(s)
Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Humans , Female , Rats , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/etiology , Letrozole/pharmacology , Letrozole/therapeutic use , Disease Models, Animal
9.
Animals (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238005

ABSTRACT

Takifugu obscurus has relatively small gills and gill pores, leading to a relatively low respiratory capacity and increased vulnerability to low dissolved oxygen (DO) levels compared to other fish. To investigate the responses of T. obscurus to acute hypoxic stress, high-throughput-sequencing-based transcriptomic analyses were conducted here to assess the responses of T. obscurus gills to acute hypoxic stress. Three environmental conditions were compared including normoxia (DO: 7.0 ± 0.2 mg/L), hypoxic stress (DO: 0.9 ± 0.2 mg/L), and reoxygenation (4, 8, 12, and 24 h after return to normoxia) conditions to identify differentially expressed genes (DEGs) responsive to hypoxia. A total of 992, 877, 1561, 1412, and 679 DEGs were identified in the normoxia and reoxygenation for 4, 8, 12, and 24 h groups in comparison to the hypoxia groups, respectively. The DEGs were primarily associated with oxidative stress, growth and development, and immune responses. Further functional annotation enrichment analysis of the DEGs revealed that they were primarily related to cytokine-cytokine interactions, transforming growth factor ß receptor (TGF-ß), cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) signaling pathway, and the mitogen-activated protein kinase (MAPK) signaling pathway. These results provide new insights into the physiological and biochemical mechanisms of T. obscurus adaptations to hypoxic stress. Furthermore, these results provide a framework for future studies into the molecular mechanisms of hypoxia tolerance and the healthy culture of T. obscurus and other fish.

10.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110525

ABSTRACT

A series of 1,4-naphthoquinone derivatives containing were synthesized as anti-cancer agents and the crystal structure of compound 5a was confirmed by X-ray diffraction. In addition, the inhibitory activities against four cancer cell lines (HepG2, A549, K562, and PC-3) were tested, respectively, and compound 5i showed significant cytotoxicity on the A549 cell line with the IC50 of 6.15 µM. Surprisingly, in the following preliminary biological experiments, we found that compound 5i induced autophagy by promoting the recycling of EGFR and signal transduction in the A549 cell, resulting in the activation of the EGFR signal pathway. The potential binding pattern between compound 5i and EGFR tyrosine kinase (PDB ID: 1M17) was also identified by molecular docking. Our research paves the way for further studies and the development of novel and powerful anti-cancer drugs.


Subject(s)
Antineoplastic Agents , Naphthoquinones , Humans , A549 Cells , Cell Line, Tumor , Cell Proliferation , Molecular Docking Simulation , Naphthoquinones/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Death , ErbB Receptors/metabolism , Autophagy , Drug Screening Assays, Antitumor , Structure-Activity Relationship
11.
Stem Cells Dev ; 32(5-6): 115-130, 2023 03.
Article in English | MEDLINE | ID: mdl-36647682

ABSTRACT

Cartilage is derived from the chondrogenic differentiation of stem cells, for which the regulatory mechanism has not been fully elucidated. N6-methyladenosine (m6A) messenger RNA (mRNA) methylation is the most common posttranscriptional modification in eukaryotic mRNAs and is mediated by m6A regulators. However, whether m6A regulators play roles in chondrogenic differentiation is unknown. Herein, we aim to determine the role of a main m6A reader protein, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), in chondrogenic differentiation regulation. Western blotting (WB) assays found that the expression of YTHDF1 increased during chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The results of quantitative polymerase chain reaction, WB, immunohistochemistry, and Alcian blue staining revealed that overexpression of YTHDF1 increased cartilage matrix synthesis and the expression of chondrogenic markers when hBMSCs, ATDC5 cells, or C3H10T1/2 cells were induced to undergo chondrogenesis. Conversely, chondrogenesis was clearly inhibited when YTHDF1 was knocked down in hBMSCs, ATDC5 cells, or C3H10T1/2 cells. Further RNA sequencing and molecular biology experiments found that YTHDF1 activated the Wnt/ß-catenin signaling pathway during chondrogenic differentiation. Finally, the effects of overexpression and knockdown of YTHDF1 on chondrogenic differentiation were reversed by inhibiting or activating ß-catenin activity. Therefore, we demonstrated that YTDHF1 promoted chondrogenic differentiation through activation of the Wnt/ß-catenin signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/genetics , Chondrogenesis/genetics , Cell Differentiation , beta Catenin/metabolism , Stem Cells/metabolism , RNA, Messenger/metabolism , Cells, Cultured , RNA-Binding Proteins/metabolism
12.
iScience ; 26(1): 105839, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36660475

ABSTRACT

The oral microbiome has been implicated in a growing number of diseases; however, determinants of the oral microbiome and their roles remain elusive. Here, we investigated the oral (saliva and tongue dorsum) metagenome, the whole genome, and other omics data in a total of 4,478 individuals and demonstrated that the oral microbiome composition and its major contributing host factors significantly differed between sexes. We thus conducted a sex-stratified metagenome-genome-wide-association study (M-GWAS) and identified 11 differential genetic associations with the oral microbiome (p sex-difference  < 5 × 10-8). Furthermore, we performed sex-stratified Mendelian randomization (MR) analyses and identified abundant causalities between the oral microbiome and serum metabolites. Notably, sex-specific microbes-hormonal interactions explained the mostly observed sex hormones differences such as the significant causalities enrichments for aldosterone in females and androstenedione in males. These findings illustrate the necessity of sex stratification and deepen our understanding of the interplay between the oral microbiome and serum metabolites.

13.
Open Biol ; 12(10): 220213, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36196536

ABSTRACT

Radiation-induced oral mucositis is the most common complication for patients who receive head/neck radiotherapy. Nicotinamide adenine dinucleotide (NAD+) is vital for DNA damage repair under ionizing radiation, through functioning as either the substrate for protein poly(ADP-ribosyl)ation at DNA break sites or the cofactor for multiple DNA repair-related enzymes, which therefore can result in a significant consumption of cellular NAD+ during DNA repair. Mammalian cells produce NAD+ mainly by recycling nicotinamide via the salvage pathway, in which the rate-limiting step is governed by nicotinamide phosphoribosyltransferase (NAMPT). However, whether NAMPT is co-opted under ionizing radiation to timely fine-tune NAD+ homeostasis remains elusive. Here we show that ionizing radiation evokes NAMPT activation within 30 min without apparent changes in its protein expression. AMPK rapidly phosphorylates NAMPT at S314 under ionizing radiation, which reinforces the enzymatic activity of NAMPT by increasing NAMPT binding with its substrate phosphoribosyl pyrophosphate (PRPP). AMPK-mediated NAMPT S314 phosphorylation substantially restores NAD+ level in the irradiated cells and facilitates DNA repair and cell viability. Our findings demonstrate a new post-translational modification-based signalling route, by which cells can rapidly orchestrate NAD+ metabolism to support DNA repair, thereby highlighting NAMPT as a potential target for the prevention of ionizing radiation-induced injuries.


Subject(s)
AMP-Activated Protein Kinases , NAD , Nicotinamide Phosphoribosyltransferase , Radiation, Ionizing , AMP-Activated Protein Kinases/metabolism , Cytokines/metabolism , Homeostasis , Humans , NAD/metabolism , Niacinamide , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Phosphoribosyl Pyrophosphate
14.
Arch Oral Biol ; 144: 105552, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279827

ABSTRACT

OBJECTIVE: There is a lack of systematic studies on salivary metabolomic profiles in burning mouth syndrome (BMS); metabolomics could help explore BMS pathogenesis. We aimed to explore the salivary metabolomic profile of patients with BMS using untargeted metabolomics techniques. DESIGN: A cross-sectional study was designed to analyze the characteristics of unstimulated whole salivary metabolomics of patients with BMS (n = 34) and healthy participants (n = 30). Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, principal component, orthogonal partial least-squares-discriminant, hierarchical clustering, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to identify differentially expressed metabolites and metabolic pathways in which they were enriched. RESULTS: We identified 12,982 metabolite ions. Among them, 394 differentially expressed metabolites were identified with variable importance in projection scores of > 1 (P < 0.05) compared with those in the controls. Based on the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, 30 metabolites were identified, and 16 of them were enriched in 25 metabolic pathways. The levels of caffeine (log2-fold change = -2.91) and its metabolites, paraxanthine (-2.01) and theophylline (-2.03), were low, and the caffeine metabolism pathway was downregulated in the BMS group compared with those in the controls (P < 0.05). CONCLUSIONS: The salivary metabolomic profile of patients with BMS presented characteristics distinct from those of the controls. A low caffeine level may be associated with BMS. This study provides a novel insight for further exploration of the pathogenesis of and potential therapeutic approaches for BMS.


Subject(s)
Burning Mouth Syndrome , Humans , Burning Mouth Syndrome/metabolism , Cross-Sectional Studies , Caffeine , Saliva/chemistry , Metabolomics
15.
Animals (Basel) ; 12(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36230352

ABSTRACT

Takifugu obscurus has relatively small gills and gill pores. Consequently, a relatively low respiratory capacity. This fish is thus easily negatively affected by the low levels of dissolved oxygen (DO) that are common in high-intensity aquaculture. In order to clarify the mechanisms underlying the hypoxia response of T. obscurus, we used liquid mass spectrometry (LC-MS) to identify and quantify the metabolites present in the T. obscurus gill under the following conditions: normoxia (DO, 7.0 ± 0.2 mg/L), hypoxia (DO, 0.9 ± 0.2 mg/L), and reoxygenation (4, 12, and 24 h after return to normoxia conditions). We identified a total of 821 and 383 metabolites in the gill in positive and negative ion modes, respectively. Of the metabolites identified in positive ion mode, 136 were differentially abundant between hypoxia and all other conditions; of the metabolites identified in negative ion mode, 34 were differentially abundant between hypoxia and all other conditions. The metabolites which were differentially abundant under hypoxia primarily included glycerol phospholipids, fatty acids, hormones, and amino acids as well as related compounds. The pathways which were significantly enriched in the differentially abundant metabolites included the lipid metabolism, amino acid metabolism, purine metabolism, FoxO signaling pathway, and mTOR signaling pathway. Our results help to clarify the mechanisms underlying hypoxia tolerance and to identify hypoxia-related metabolites, as well as to highlight potential research targets for the development of hypoxic-tolerant strains in the future.

16.
Front Immunol ; 13: 967988, 2022.
Article in English | MEDLINE | ID: mdl-36052085

ABSTRACT

Hashimoto's thyroiditis (HT) and its autoantibodies may be associated with oral lichen planus (OLP). In this cross-sectional study, we aimed to assess the relationship among HT, auto-anti-thyroid antibodies, and OLP in a Chinese population of 247 patients with oral lichen planus. Clinical manifestations of OLP were evaluated using the Thongprasom scoring system and clinical type. The diagnosis of HT was based on thyroid function, anti-thyroid peroxidase antibody (anti-TPOAb) and anti-thyroglobulin antibody (anti-TgAb) detection, and ultrasonography. The prevalence of HT in all patients with OLP was 39.68% (98/247); the prevalence in females with OLP was 46.24% (86/186), which was higher than that in males with OLP 19.67% (12/61) (P < 0.01). The titers of the two HT autoantibodies in females with OLP were higher than those in males (P < 0.01). The clinical manifestations of OLP, regardless of being evaluated using the Thongprasom system or clinical type, were not significantly associated with HT development or TPOAb (P = 0.864) or TgAb titers (P = 0.745). In this population-based southern Chinese cohort, the prevalence of HT in patients with OLP, particularly in female patients with OLP, was significantly higher than that in the general population. Female patients had higher HT autoantibody titers than male patients. However, the clinical manifestations of OLP were not significantly correlated with either HT development or auto-anti-thyroid antibody levels. The findings could help further elucidate the factors involved in the relationship between oral lichen planus and Hashimoto's thyroiditis.


Subject(s)
Hashimoto Disease , Lichen Planus, Oral , Autoantibodies , Cross-Sectional Studies , Female , Humans , Lichen Planus, Oral/epidemiology , Male
17.
Oral Dis ; 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35972187

ABSTRACT

OBJECTIVES: Oral lichen planus, a chronic inflammatory immune disease, occurs in the oral mucosa. We aimed to assess the prevalence and possible influencing factors of oral lichen planus in patients with diabetes mellitus. SUBJECTS AND METHODS: This cross-sectional study involved 525 patients with diabetes mellitus and 525 controls. We collected information on blood glucose level, duration of diabetes, diabetic complications, treatment methods, other systemic diseases and medication history. RESULTS: Oral lichen planus was significantly more prevalent in the diabetes mellitus/type 2 diabetes mellitus group than in the controls (2.3%/2.2% vs. 0.6%, p = 0.019/0.022). There was no significant association between patients with diabetes mellitus with and those without oral lichen planus in age (p = 0.195), sex (p = 0.390), blood glucose level (p = 1), duration of diabetes (p = 0.638), diabetic complications (p = 1), treatment methods (p = 0.962), other systemic diseases (p = 0.891) and medication history (p = 0.848). CONCLUSIONS: Diabetes mellitus was associated with oral lichen planus; there was a higher prevalence of oral lichen planus in patients with diabetes mellitus/type 2 diabetes mellitus than in those without diabetes. Oral lichen planus development in patients with diabetes mellitus was not significantly associated with age, sex, blood glucose level, duration of diabetes, diabetic complications, treatment methods, other systemic diseases and medication history.

18.
Ecol Evol ; 12(6): e8972, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784091

ABSTRACT

Freshwater ecosystems face multiple threats to their stability globally. Poyang Lake is the largest lake in China, but its habitat has been seriously degraded because of human activities and natural factors (e.g. climate change), resulting in a decline in freshwater biodiversity. Zooplankton are useful indicators of environmental stressors because they are sensitive to external perturbations. DNA metabarcoding is an approach that has gained significant traction by aiding ecosystem conservation and management. Here, the seasonal and spatial variability in the zooplankton diversity were analyzed in the Poyang Lake Basin using DNA metabarcoding. The results showed that the community structure of zooplankton exhibited significant seasonal and spatial variability using DNA metabarcoding, where the community structure was correlated with turbidity, water temperature, pH, total phosphorus, and chlorophyll-a. These results indicated habitat variations affected by human activities and seasonal change could be the main driving factors for the variations of zooplankton community. This study also provides an important reference for the management of aquatic ecosystem health and conservation of aquatic biodiversity.

19.
Animals (Basel) ; 12(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35454197

ABSTRACT

Background: The water level of Poyang Lake (China) fluctuates seasonally. Shahu Lake, a smaller body of water connected to Poyang Lake during the wet season, is separated in the dry season. Due to a special fishing method termed 'lake enclosed in autumn', the water level is lowered and reaches its lowest point in January, which is <0.5 m deep in the middle of the lake. Our research investigated the effect of water level changes on the zooplankton community composition in Shahu Lake. Methods: We used both DNA metabarcoding method (MBC) (18S rRNA gene V4 region) and morphological method (MOI) to track the zooplankton community structure over four seasons in Shahu Lake (China). Results: Totals of 90 and 98 species of zooplankton were detected by MOI and MBC, respectively, with rotifers being the main zooplankton component. The α-diversity index of both methods increased from spring to summer and decreased from summer to autumn, reaching the lowest value in winter. NMDS and a cluster analysis showed that all zooplankton communities detected by MOI and MBC were significantly separated by season. The zooplankton community in winter was separated from that of the other three seasons, but the summer and autumn communities were more similar. Conclusions: Changes in the water level had significant effects on the zooplankton community composition. We found that MBC was more able to detect the differences in the zooplankton composition than MOI. MBC also had more advantages in copepod recognition. In our study, 37 species of copepods were detected by MBC, but only 11 species were detected by MOI. We concluded that MBC should be used to research the seasonal variations of zooplankton.

20.
Protoplasma ; 259(6): 1507-1520, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35277781

ABSTRACT

Glutamic acid (Glu) is not only an important protein building block, but also a signaling molecule in plants. However, the Glu-boosted thermotolerance and its underlying mechanisms in plants still remain unclear. In this study, the maize seedlings were irrigated with Glu solution prior to exposure to heat stress (HS), the seedlings' thermotolerance as well as osmoregulation, glyoxalase, and non-glyoxalase systems were evaluated. The results manifested that the seedling survival and tissue vitality after HS were boosted by Glu, while membrane damage was reduced in comparison with the control seedlings without Glu treatment, indicating Glu boosted the thermotolerance of maize seedlings. Additionally, root-irrigation with Glu increased its endogenous level, reinforced osmoregulation system (i.e., an increase in the levels of proline, glycine betaine, trehalose, and total soluble sugar, as well as the activities of pyrroline-5-carboxylate synthase, betaine dehydrogenase, and trehalose-5-phosphate phosphatase) in maize seedlings under non-HS and HS conditions compared with the control. Also, Glu treatment heightened endogenous methylglyoxal level and the activities of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (methylglyoxal reductase, lactate dehydrogenase, aldo-ketoreductase, and alkenal/alkenone reductase) in maize seedlings under non-HS and HS conditions as compared to the control. These data hint that osmoregulation, glyoxalase, and non-glyoxalase systems are involved in signaling molecule Glu-boosted thermotolerance of maize seedlings.


Subject(s)
Lactoylglutathione Lyase , Thermotolerance , Betaine/metabolism , Glutamic Acid/metabolism , Lactate Dehydrogenases/metabolism , Lactoylglutathione Lyase/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Osmoregulation , Oxidoreductases/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proline/metabolism , Pyruvaldehyde , Seedlings/metabolism , Trehalose/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...