Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 145(33): 18402-18413, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578165

ABSTRACT

Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.

2.
Nature ; 613(7943): 280-286, 2023 01.
Article in English | MEDLINE | ID: mdl-36631649

ABSTRACT

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

3.
J Am Chem Soc ; 144(50): 23168-23178, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36507773

ABSTRACT

Molecular recognition, based on noncovalent bonding interactions, plays a central role in directing supramolecular phenomena in both chemical and biological environments. The identification and investigation of weakly associated recognition motifs, however, remains a major challenge, especially when the motifs are interlinked with and obscured by other robust binding modes in complicated systems. For example, although the host-guest recognition between the radical cations of both cyclobis(paraquat-p-phenylene) (CBPQT) and 4,4'-bipyridinium (BIPY) salts has been thoroughly investigated, the question of whether other binding modes exist between these two positively charged entities is the subject of some debate because of the complexity and dynamic nature of this supramolecular system. In order to address this conundrum, we have synthesized a [2]catenane─formed by mechanical interlocking between CBPQT and another BIPY-containing ring─which enhances the weak interactions between components and reduces significantly the complexity of the system for easier characterization. By employing this [2]catenane as a model compound, we have performed a full-spectrum investigation of radical interactions and revealed unambiguously a total of three possible binding modes between CBPQT and BIPY─to be specific, a bisradical tetracationic, a trisradical tricationic, and a bisradical dicationic association─as demonstrated by various methods of characterization including UV/vis/NIR, EPR, and NMR spectroscopies, electrochemical measurements and X-ray crystallography. The two newly discovered bisradical binding modes have potential applications in the construction of self-assembled materials and in mediating supramolecular catalysis. The mechanical bond-assisted approach used in this research is broadly applicable to investigating noncovalent bonding interactions.


Subject(s)
Magnetic Resonance Spectroscopy , Cations/chemistry , Crystallography, X-Ray
4.
ACS Cent Sci ; 8(10): 1369-1372, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36313169
5.
J Am Chem Soc ; 144(37): 16898-16904, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36074552

ABSTRACT

Traditionally, the synthesis of polyrotaxanes has been limited by synthetic methods that rely on an innate affinity between the rings and the polymer chains. The use of rotaxane-forming molecular pumps allows this limitation to be circumvented in the production of non-equilibrium polyrotaxanes in which rings are trapped on polymer chains for which they have little or no affinity. Pumping cassettes, each composed of a bipyridinium unit linked (i) by a bismethylene bridge to a terminal 2,6-dimethylpyridinium cationic unit and (ii) by a methylene group to an isopropylphenylene steric barrier, were attached using copper-catalyzed azide-alkyne cycloadditions to the ends of a polypropylene glycol (PPG) chain of number-average molecular weight Mn ≈ 2200. Using a one-pot electrosynthetic protocol, a series of PPG-based polyrotaxanes with cyclobis(paraquat-p-phenylene) as the rings were synthesized. Despite the steric bulk of the PPG backbone, it was found to be a suitable collecting chain for threading up to 10 rings. The pumping of two rings is sufficient to render these hydrophobic polymers soluble in aqueous solution. Their hydrodynamic diameters and diffusion constants vary according to the number of pumped rings. The non-equilibrium nature of these polyrotaxanes is manifested in their gradual degradation and dethreading at elevated temperatures.


Subject(s)
Rotaxanes , Alkynes , Azides , Copper/chemistry , Paraquat , Polymers/chemistry , Propylene Glycols , Rotaxanes/chemistry
6.
Proc Natl Acad Sci U S A ; 119(12): e2118573119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290119

ABSTRACT

Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of SN2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control.


Subject(s)
Catenanes , Rotaxanes , Catenanes/chemistry , Kinetics , Rotaxanes/chemistry
7.
Nature ; 603(7900): 265-270, 2022 03.
Article in English | MEDLINE | ID: mdl-35264758

ABSTRACT

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

8.
J Am Chem Soc ; 144(8): 3572-3579, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35179889

ABSTRACT

Artificial molecular pumps (AMPs), inspired by the active cellular transport exhibited in biological systems, enable cargoes to undergo unidirectional motion, courtesy of molecular ratchet mechanisms in the presence of energy sources. Significant progress has been achieved, using alternatively radical interactions and Coulombic repulsive forces to create working AMPs. In an attempt to widen the range of these AMPs, we have explored the effect of molecular pumping on the photophysical properties of a collecting chain on a dumbbell incorporating a centrally located pyrene fluorophore and two terminal pumping cassettes. The AMP discussed here sequesters two tetracationic cyclophanes from the solution, generating a [3]rotaxane in which the fluorescence of the dumbbell is quenched. The research reported in this Article demonstrates that the use of pumping cassettes allows us to generate the [3]rotaxane in which the photophysical properties of fluorophores can be modified in a manner that cannot be achieved with a mixture of the dumbbell and ring components of the rotaxane on account of their weak binding in solution.


Subject(s)
Rotaxanes , Biophysical Phenomena , Fluorescence , Fluorescent Dyes , Oxidation-Reduction , Rotaxanes/chemistry
9.
Science ; 374(6572): 1215-1221, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34672694

ABSTRACT

Over the past century, adsorption has been investigated extensively in equilibrium systems, with a focus on the van der Waals interactions associated with physisorption and electronic interactions in the case of chemisorption. In this study, we demonstrate mechanisorption, which results from nonequilibrium pumping to form mechanical bonds between the adsorbent and the adsorbate. This active mode of adsorption has been realized on surfaces of metal-organic frameworks grafted with arrays of molecular pumps. Adsorbates are transported from one well-defined compartment, the bulk, to another well-defined compartment, the interface, thereby creating large potential gradients in the form of chemical capacitors wherein energy is stored in metastable states. Mechanisorption extends, in a fundamental manner, the scope and potential of adsorption phenomena and offers a transformative approach to control chemistry at surfaces and interfaces.

10.
J Am Chem Soc ; 143(38): 15688-15700, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34505510

ABSTRACT

The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.

11.
J Am Chem Soc ; 143(21): 8000-8010, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34028258

ABSTRACT

Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.

12.
J Am Chem Soc ; 143(22): 8476-8487, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34043344

ABSTRACT

Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.

13.
Nat Chem ; 13(5): 402-419, 2021 05.
Article in English | MEDLINE | ID: mdl-33859393

ABSTRACT

Aromatic hydrocarbon belts (AHCBs) have fascinated scientists for over half a century because of their aesthetically appealing structures and potential applications in the field of carbon nanotechnology. One of the enduring challenges in synthesizing AHCBs is how do we cope with the build-up of energy in the highly strained structures during their synthesis? Successful preparations of AHCBs offer the prospect of providing well-defined templates for the growth of uniform single-walled carbon nanotubes-a long-standing interest in nanocarbon science. In this Review, we revisit the protracted historical background involving the rational design and synthesis of AHCBs and highlight some of the more recent breakthroughs, with emphasis being placed on the different strategies that have been used for building up curved and fused benzenoid rings into molecular belts. We also discuss the scientific challenges in this fledgling field and provide some pointers as to what could transpire in years to come.

14.
J Am Chem Soc ; 142(34): 14443-14449, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32787240

ABSTRACT

The ability to control the relative motions of component parts in molecules is essential for the development of molecular nanotechnology. The advent of mechanically interlocked molecules (MIMs) has enhanced significantly the opportunities for chemists to harness such motions in artificial molecular machines (AMMs). Recently, we have developed artificial molecular pumps (AMPs) capable of producing highly energetic oligo- and polyrotaxanes with high precision. Here, we report the design, synthesis, and operation of an AMP incorporating a photocleavable stopper that allows for the use of orthogonal stimuli. Our approach employs a ratchet mechanism to pump a ring onto a collecting chain, forming an intermediate [2]rotaxane. At a subsequent time, application of light triggers the release of the ring back into the bulk solution with temporal control. This process is monitored by the quenching of the fluorescence of a naphthalene-based fluorophore. This design may find application in the fabrication of molecular transporting systems with on-demand functions.

15.
Science ; 368(6496): 1247-1253, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32527831

ABSTRACT

Mechanically interlocked molecules are likely candidates for the design and synthesis of artificial molecular machines. Although polyrotaxanes have already found niche applications in exotic materials with specialized mechanical properties, efficient synthetic protocols to produce them with precise numbers of rings encircling their polymer dumbbells are still lacking. We report the assembly line-like emergence of poly[n]rotaxanes with increasingly higher energies by harnessing artificial molecular pumps to deliver rings in pairs by cyclical redox-driven processes. This programmable strategy leads to the precise incorporation of two, four, six, eight, and 10 rings carrying 8+, 16+, 24+, 32+, and 40+ charges, respectively, onto hexacationic polymer dumbbells. This strategy depends precisely on the number of redox cycles applied chemically or electrochemically, in both stepwise and one-pot manners.

16.
J Am Chem Soc ; 142(23): 10308-10313, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32463231

ABSTRACT

The assembly of a kinetically trapped daisy chain polymer under redox control has been achieved with a self-complementary monomer using an energy ratchet mechanism. The monomer is composed of a molecular pump at one end and a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring at the other end. The pump and ring are linked together by a long collecting chain. When the monomer is reduced to its radical state, it self-assembles into a supramolecular daisy chain polymer on account of radical-pairing interactions. When all of the bipyridinium radical cations are quickly oxidized to dications, the CBPQT4+ rings are forced to thread onto the collecting chains, forming an out-of-equilibrium, kinetically trapped daisy chain polymer. This polymer can be switched reversibly back to the supramolecular polymer by reduction, followed by depolymerization to afford the monomer as a result of slow oxidation. This proof-of-concept investigation opens up opportunities for synthesizing mechanically interlocked polymers using molecular machines.

17.
J Am Chem Soc ; 142(15): 7190-7197, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32223154

ABSTRACT

Two new highly charged [2]catenanes-namely, mHe[2]C·6PF6 and mHo[2]C·6PF6-were synthesized by exploiting radical host-guest templation between derivatives containing BIPY•+ radical cations and the meta analogue of cyclobis(paraquat-p-phenylene). In contrast to related [2]catenanes that have been isolated as air-stable monoradicals, both mHe[2]C·6PF6 and mHo[2]C·6PF6 exist as air-stable singlet bisradicals, as evidenced by both X-ray crystallography in the solid state and EPR spectroscopy in solution. Electrochemical studies indicate that the first two reduction peaks of these two [2]catenanes are shifted significantly to more positive potentials, a feature which is responsible for their extraordinary stability in air. The mixed-valence nature of the mono- and bisradical states endows them with unique NIR absorption properties, e.g., NIR absorption bands for the mono- and bisradical states observed at ∼1800 and ∼1450 nm, respectively. These [2]catenanes are potentially useful in applications that include NIR photothermal conversion, UV-vis-NIR multiple-state electrochromic materials, and multiple-state memory devices. Our findings highlight the principle of "mechanical-bond-induced stabilization" as an efficient strategy for designing persistent organic radicals.

18.
Chem Sci ; 11(1): 107-112, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-32110362

ABSTRACT

Although host-guest pairing interactions between bisradical dicationic cyclobis(paraquat-p-phenylene) (BB2(˙+) ) and the bipyridinium radical cation (BIPY˙+ ) have been studied extensively, host molecules other than BB2(˙+) are few and far between. Herein, four bisradical dicationic cyclophanes with tunable cavity sizes are investigated as new bisradical dicationic hosts for accommodating the methyl viologen radical cation (MV˙+ ) to form trisradical tricationic complexes. The structure-property relationships between cavity sizes and binding affinities have been established by comprehensive solution and solid-state characterizations as well as DFT calculations. The association constants of the four new trisradical tricationic complexes are found to range between 7400 and 170 000 M-1, with the strongest one being 4.3 times higher than that for [MV⊂BB]3(˙+) . The facile accessibility and tunable stability of these new trisradical tricationic complexes make them attractive redox-controlled recognition motifs for further use in supramolecular chemistry and mechanostereochemistry.

19.
J Am Chem Soc ; 142(13): 6180-6187, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32017550

ABSTRACT

The efficient preparation of single-crystalline ionic polymers and fundamental understanding of their structure-property relationships at the molecular level remains a challenge in chemistry and materials science. Here, we describe the single-crystal structure of a highly ordered polycationic polymer (polyelectrolyte) and its proton conductivity. The polyelectrolyte single crystals can be prepared on a gram-scale in quantitative yield, by taking advantage of an ultraviolet/sunlight-induced topochemical polymerization, from a tricationic monomer-a self-complementary building block possessing a preorganized conformation. A single-crystal-to-single-crystal photopolymerization was revealed unambiguously by in situ single-crystal X-ray diffraction analysis, which was also employed to follow the progression of molecular structure from the monomer, to a partially polymerized intermediate, and, finally, to the polymer itself. Collinear polymer chains are held together tightly by multiple Coulombic interactions involving counterions to form two-dimensional lamellar sheets (1 nm in height) with sub-nanometer pores (5 Å). The polymer is extremely stable under 254 nm light irradiation and high temperature (above 500 K). The extraordinary mechanical strength and environmental stability-in combination with its impressive proton conductivity (∼3 × 10-4 S cm-1)-endow the polymer with potential applications as a robust proton-conducting material. By marrying supramolecular chemistry with macromolecular science, the outcome represents a major step toward the controlled synthesis of single-crystalline polyelectrolyte materials with perfect tacticity.

20.
J Am Chem Soc ; 142(11): 5419-5428, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32083871

ABSTRACT

Synthetic macrocycles capable of undergoing allosteric regulation by responding to versatile external stimuli are the subject of increasing attention in supramolecular science. Herein, we report a structurally transformative tetracationic cyclophane containing two 3,6-bis(4-pyridyl)-l,2,4,5-tetrazine (4-bptz) units, which are linked together by two p-xylylene bridges. The cyclophane, which possesses modular redox states and structural post-modifications, can undergo two reversibly consecutive two-electron reductions, affording first its bisradical dicationic counterpart, and then subsequently the fully reduced species. Furthermore, one single-parent cyclophane can afford effectively three other new analogs through box-to-box cascade transformations, taking advantage of either reductions or an inverse electron-demand Diels-Alder (IEDDA) reaction. While all four new tetracationic cyclophanes adopt rigid and symmetric box-like conformations, their geometries in relation to size, shape, electronic properties, and binding affinities toward polycyclic aromatic hydrocarbons can be readily regulated. This structurally transformative tetracationic cyclophane performs a variety of new tasks as a result of structural post-modifications, thus serving as a toolbox for probing the radical properties and generating rapidly a range of structurally diverse cyclophanes by efficient divergent syntheses. This research lays a solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.

SELECTION OF CITATIONS
SEARCH DETAIL