Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 9: e12133, 2021.
Article in English | MEDLINE | ID: mdl-34616610

ABSTRACT

BACKGROUND: High soil salinity seriously affects plant growth and development. Excessive salt ions mainly cause damage by inducing osmotic stress, ion toxicity, and oxidation stress. Casuarina equisetifolia is a highly salt-tolerant plant, commonly grown as wind belts in coastal areas with sandy soils. However, little is known about its physiology and the molecular mechanism of its response to salt stress. RESULTS: Eight-week-old C. equisetifolia seedlings grown from rooted cuttings were exposed to salt stress for varying durations (0, 1, 6, 24, and 168 h under 200 mM NaCl) and their ion contents, cellular structure, and transcriptomes were analyzed. Potassium concentration decreased slowly between 1 h and 24 h after initiation of salt treatment, while the content of potassium was significantly lower after 168 h of salt treatment. Root epidermal cells were shed and a more compact layer of cells formed as the treatment duration increased. Salt stress led to deformation of cells and damage to mitochondria in the epidermis and endodermis, whereas stele cells suffered less damage. Transcriptome analysis identified 10,378 differentially expressed genes (DEGs), with more genes showing differential expression after 24 h and 168 h of exposure than after shorter durations of exposure to salinity. Signal transduction and ion transport genes such as HKT and CHX were enriched among DEGs in the early stages (1 h or 6 h) of salt stress, while expression of genes involved in programmed cell death was significantly upregulated at 168 h, corresponding to changes in ion contents and cell structure of roots. Oxidative stress and detoxification genes were also expressed differentially and were enriched among DEGs at different stages. CONCLUSIONS: These results not only elucidate the mechanism and the molecular pathway governing salt tolerance, but also serve as a basis for identifying gene function related to salt stress in C. equisetifolia.

2.
Int J Mol Sci ; 20(11)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174407

ABSTRACT

The sucrose non-fermentation-related protein kinase (SnRK) is a kind of Ser/Thr protein kinase, which plays a crucial role in plant stress response by phosphorylating the target protein to regulate the interconnection of various signaling pathways. However, little is known about the SnRK family in Eucalyptus grandis. Thirty-four putative SnRK sequences were identified in E. grandis and divided into three subgroups (SnRK1, SnRK2 and SnRK3) based on phylogenetic analysis and the type of domain. Chromosome localization showed that SnRK family members are unevenly distributed in the remaining 10 chromosomes, with the notable exception of chromosome 11. Gene structure analysis reveal that 10 of the 24 SnRK3 genes contained no introns. Moreover, conserved motif analyses showed that SnRK sequences belonged to the same subgroup that contained the same motif type of motif. The Ka/Ks ratio of 17 paralogues suggested that the EgrSnRK gene family underwent a purifying selection. The upstream region of EgrSnRK genes enriched with different type and numbers of cis-elements indicated that EgrSnRK genes are likely to play a role in the response to diverse stresses. Quantitative real-time PCR showed that the majority of the SnRK genes were induced by salt treatment. Genome-wide analyses and expression pattern analyses provided further understanding on the function of the SnRK family in the stress response to different environmental salt concentrations.


Subject(s)
Eucalyptus/genetics , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Salt Stress , Chromosomes, Plant/genetics , Conserved Sequence , Eucalyptus/metabolism , Gene Expression Regulation, Plant , Introns , Multigene Family , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism
3.
Int J Mol Sci ; 20(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974801

ABSTRACT

VQ genes play important roles in plant development, growth, and stress responses. However, little information regarding the functions of VQ genes is available for Eucalyptus grandis. In our study, genome-wide characterization and identification of VQ genes were performed in E. grandis. Results showed that 27 VQ genes, which divided into seven sub-families (I-VII), were found, and all but two VQ genes showed no intron by gene structure and conserved motif analysis. To further identify the function of EgrVQ proteins, gene expression analyses were also developed under hormone treatments (brassinosteroids, methyl jasmonate, salicylic acid, and abscisic acid) and abiotic conditions (salt stress, cold 4 °C, and heat 42 °C). The results of a quantitative real-time PCR analysis indicated that the EgrVQs were variously expressed under different hormone treatments and abiotic stressors. Our study provides a comprehensive overview of VQ genes in E. grandis, which will be beneficial in the molecular breeding of E. grandis to promote its resistance to abiotic stressors; the results also provide a basis from which to conduct further investigation into the functions of VQ genes in E. grandis.


Subject(s)
Eucalyptus/metabolism , Gene Expression Regulation, Plant/drug effects , Multigene Family , Plant Growth Regulators/pharmacology , Plant Proteins/biosynthesis , Stress, Physiological/drug effects , Eucalyptus/genetics , Plant Proteins/genetics
4.
Gene ; 678: 38-48, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30077764

ABSTRACT

The WRKY transcription factors, a large family of proteins in plants, are involved in multiple developmental and biological processes including response to phytohormones and abiotic stress. However, little information is available regarding the WRKY family in Eucalyptus, which has been the most widely planted hardwood trees in tropical and subtropical areas. In this study, a total of 79 WRKY genes (named as EgrWRKY1-79) were identified from the Eucalyptus grandis genome and classified into three main groups according to the phylogenetic analysis, which was further supported by their gene structure and conserved motifs. Of which, 28 EgrWRKYs were involved in tandem duplication but none for segmental duplication, indicating that tandem duplication was the main cause for the expansion of WRKY gene family in E. grandis. Subsequently, expression profiles of EgrWRKY genes in eight different tissues and in response to treatments of three hormones (SA, JA, and BR) and two abiotic stresses (salt and cold) were analyzed. The results revealed that the EgrWRKY genes had differential expression in their transcript abundance and they were differentially expressed in response to plant hormones and salt and cold stresses, suggesting their contributions to plant developmental processes as well as abiotic stresses with the involvement of hormone signaling transduction. Taken together, these findings will increase our understanding of EgrWRKY gene family involved in abiotic stresses and hormone signaling transduction, and also will provide some stress-responsive candidate EgrWRKY genes for further characterization of their functions in Eucalyptus.


Subject(s)
Eucalyptus/genetics , Gene Expression Profiling/methods , Plant Growth Regulators/pharmacology , Transcription Factors/genetics , Chromosomes, Plant/genetics , Eucalyptus/physiology , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics , Stress, Physiological , Tissue Distribution
5.
Physiol Mol Biol Plants ; 24(5): 821-831, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150857

ABSTRACT

Brassinosteroids (BRs) are a group of plant hormones which play a pivotal role in modulating cell elongation, stress responses, vascular differentiation and senescence. In response to BRs, BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) accumulate in the nucleus, where they modulate thousands of target genes and coordinate many biological processes, especially in regulating defense against biotic and abiotic stresses. In this study, 6 BZR TFs of Eucalyptus grandis (EgrBZR) from a genome-wide survey were characterized by sequence analysis and expression profiling against several abiotic stresses. The results showed that BZR gene family in Eucalyptus was slightly smaller compared to Populus and Arabidopsis, but all phylogenetic groups were represented. Various systematic in silico analysis of these TFs validated the basic properties of BZRs, whereas comparative studies showed a high degree of similarity with recognized BZRs of other plant species. In the organ-specific expression analyses, 4 EgrBZRs were expressed in vascular tissue indicating their possible functions in wood formation. Meanwhile, almost all EgrBZR genes showed differential transcript abundance levels in response to exogenously applied BR, MeJA, and SA, and salt and cold stresses. Besides, protein interaction analysis showed that all EgrBZR genes were associated with BR signaling directly or indirectly. These TFs were proposed as transcriptional activators or repressors of abiotic stress response and growth and development pathways of E. grandis by participating in BR signaling processes. These findings would be helpful in resolving the regulatory mechanism of EgrBZRs in stress resistance conditions but require further functional study of these potential TFs in Eucalyptus.

6.
Protoplasma ; 255(4): 1107-1119, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29423752

ABSTRACT

Gibberellins (GAs) play a key role in plant growth and development including cell elongation, cell expansion, and xylem differentiation. Eucalyptus are the world's most widely planted hardwood trees providing fiber and energy. However, the roles of GAs in Eucalyptus remain unclear and their effects on xylem development remain to be determined. In this study, E. grandis plants were treated with 0.10 mg L-1 GA3 and/or paclobutrazol (PAC, a GA inhibitor). The growth of shoot and root were recorded, transverse sections of roots and stems were stained using toluidine blue, and expression levels of genes related to hormone response and secondary cell wall biosynthesis were analyzed by quantitative real-time PCR. The results showed that GA3 dramatically promoted the length of shoot and root, but decreased the diameter of root and stem. Exogenous GA3 application also significantly promoted xylem development in both stem and root. Expression analysis revealed that exogenous GA3 application altered the transcript levels of genes related to the GA biosynthetic pathway and GA signaling, as well as genes related to auxin, cytokinin, and secondary cell wall. These findings suggest that GAs may interact with other hormones (such as auxin and cytokinin) to regulate the expression of secondary cell wall biosynthesis genes and trigger xylogenesis in Eucalyptus plants.


Subject(s)
Biosynthetic Pathways/genetics , Eucalyptus/growth & development , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Plant Development/drug effects , Eucalyptus/chemistry , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...