Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 408: 132158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38744338

ABSTRACT

BACKGROUND: Cardiomyocyte apoptosis plays a vital role in myocardial ischemia-reperfusion (MI/R) injury; however, the role of beclin1 (BECN1) remains unclear. This study aimed at revealing the function of BECN1 during cardiomyocyte apoptosis after MI/R injury. METHODS: In vivo, TTC and Evan's blue double staining was applied to verify the gross morphological alteration in both wild type (WT) mice and BECN1 transgene mice (BECN1-TG), and TUNEL staining and western blot were adopted to evaluate the cardiomyocyte apoptosis. In vitro, a hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate MI/R injury. Proteomics analysis was preformed to verify if apoptosis occurs in the H/R cellular model. And apoptosis factors, RIPK1, Caspase-1, Caspase-3, and cleaved Caspase-3, were investigated using western bolting. In addition, the mRNA level were verified using RT-PCR. To further investigate the protein interactions small interfering RNA and lentiviral transfection were used. To continue investigate the protein interactions, immunofluorescence and coimmunoprecipitation were applied. RESULTS: Morphologically, BECN1 significantly attenuated the apoptosis from TTC-Evan's staining, TUNEL, and cardiac tissue western blot. After H/R, a RIPK1-induced complex (complex II) containing RIPK1, Caspase-8, and FADD was formed. Thereafter, cleaved Caspase-3 was activated, and myocyte apoptosis occurred. However, BECN1 decreased the expression of RIPK1, Caspase-8, and FADD. Nevertheless, BECN1 overexpression increased RIPK1 ubiquitination before apoptosis by inhibiting OTUD1. CONCLUSIONS: BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in C-Caspase-3-induced myocyte apoptosis after MI/R injury. Therefore, BECN1 can function as a cardioprotective candidate.


Subject(s)
Apoptosis , Beclin-1 , Caspase 8 , Down-Regulation , Fas-Associated Death Domain Protein , Myocardial Reperfusion Injury , Myocytes, Cardiac , Receptor-Interacting Protein Serine-Threonine Kinases , Ubiquitination , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Caspase 8/metabolism , Beclin-1/metabolism , Ubiquitination/physiology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Down-Regulation/physiology , Male , Mice, Transgenic , Mice, Inbred C57BL , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL