Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2405371, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39077942

ABSTRACT

The present study provides a facile one-pot pyrolysis strategy to prepare serial nitrogen-doped (N-doped) metal/carbon composites derived from six types of metal ethylenediaminetetraacetic acid (EDTA-M, M = Co, Cu, Mn, Fe, Mg, and Ca). N-doped Co/C composite integrated carbonaceous with magnetic components to attain dielectric-magnetic double loss mechanisms. The minimum reflection loss and effective absorption bandwidth reached -57.6 dB at 1.75 mm and 4.64 GHz at 1.52 mm, respectively. The electromagnetic simulation further confirms that the dissipation ability increases with the improvement of carbonization temperature. Results show that altering the metal species of precursors can significantly improve the electrochemical performance of the composites using the identical strategy. N-doped Cu/C composite performed a maximum specific capacitance of 2383.3 F g-1 at 0.5 A g-1 -1, and maintained 86.3% cycling stability at 20 A g-1 after 5000 cycles. The energy density of a symmetrical two-electrode configuration achieved 350.13 Wh kg-1 at a power density of 4000.04 W kg-1. Density functional theory calculations indicate that nitrogen dopants cause faster ion transport and stronger adsorption capacity. Moreover, the bifunctionality of other composites types are also systematically characterized.

2.
Materials (Basel) ; 17(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38541466

ABSTRACT

Based on MnO2/carbon cloth (CC) composite materials, an Ag-doped MnO2 nanowire, self-assembled, urchin-like structure was synthesized in situ on the surface of CC using a simple method, and a novel and efficient flexible electrode material for supercapacitors was developed. The morphology, structure, elemental distribution, and pore distribution of the material were analyzed using SEM, TEM, XRD, XPS, and BET. The electrochemical performance was tested using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). In the three-electrode system, GCD testing showed that the specific capacitance of the material reached 520.8 F/g at 0.5 A/g. After 2000 cycles at a current density of 1 A/g, the capacitance retention rate was 90.6%, demonstrating its enormous potential in the application of supercapacitor electrode materials.

SELECTION OF CITATIONS
SEARCH DETAIL