Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887058

ABSTRACT

In this study, a photocatalytic antibacterial composite of polydopamine-reduced graphene oxide (PDA-rGO)/BiVO4 is prepared by a hydrothermal self-polymerization reduction method. Its morphology and physicochemical properties are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), and X-ray diffraction (XRD). The results indicate that BiVO4 particles are evenly distributed on the rGO surface. Escherichia coli (E. coli) MG1655 is selected as the model bacteria, and its antibacterial performance is tested by flat colony counting and the MTT method under light irradiation. PDA-rGO/BiVO4 inhibits the growth of E. coli under both light and dark conditions, and light significantly enhances the bacteriostasis of PDA-rGO/BiVO4. A combination of BiVO4 with PDA-rGO is confirmed by the above characterization methods as improving the photothermal performance under visible light irradiation. The composite possesses enhanced photocatalytic antibacterial activity. Additionally, the photocatalytic antibacterial mechanism is investigated via the morphology changes in the SEM images of MG1655 bacteria, 2',7'-dichlorofluorescein diacetate (DCFH-DA), the fluorescence detection of the reactive oxygen species (ROS), and gene expression. These results show that PDA-rGO/BiVO4 can produce more ROS and lead to bacterial death. Subsequently, the q-PCR results show that the transmembrane transport of bacteria is blocked and the respiratory chain is inhibited. This study may provide an important strategy for expanding the application of BiVO4 in biomedicine and studying the photocatalytic antibacterial mechanism.


Subject(s)
Bismuth , Vanadates , Anti-Bacterial Agents/pharmacology , Bismuth/chemistry , Bismuth/pharmacology , Catalysis , Escherichia coli , Graphite , Indoles , Light , Polymers , Reactive Oxygen Species , Spectroscopy, Fourier Transform Infrared , Vanadates/pharmacology
2.
Appl Opt ; 60(16): 4930-4937, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34143055

ABSTRACT

Solar steam generation has widespread application in wastewater treatment, seawater desalination, liquid-liquid separation, and other fields, providing potential opportunities for producing fresh water. Up until now, most researchers in this field focused on enhancing the evaporation rate of the solar steam generation device. However, problems in terms of its portability and flexibility still exist when it comes to real application scenarios. Herein, we propose a novel, to the best of our knowledge, integrated multi-layer textile composed of reduced graphene oxide/cotton (RGO/cotton) fabric, cotton yarn, and polypropylene (PP) fabric for solar-driven steam generation. The evaporation rate obtained by the integrated multi-layer textile as prepared is ${0.83}\;{{\rm kg\cdot m}^{- 2}}\cdot{{\rm h}^{- 1}}$ under one sun solar radiation, which is 3.16 times higher than that of blank experiment and is superior to many previously reported works. Its remarkable evaporation performance is mainly attributed to the inherent multi-layer structures, where porous RGO/cotton fabric exhibits ultra-water vapor permeability, hydrophilic cotton yarn supplies water continuously, and low-density hydrophobic PP fabric hinders heat sustainably. Based on the results of application performance evaluation, the integrated multi-layer textile with scalable manufacturability, portability, durability, and flexibility is expected to boost the development of solar-driven steam generation.

3.
RSC Adv ; 10(32): 18614-18623, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518341

ABSTRACT

Electrospun poly(l)-lactide (PLLA) ultrafine fibers are a biodegradable and biocompatible scaffold, widely used in tissue engineering applications. Unfortunately, these scaffolds have some limitations related to the absence of bioactivity and antibacterial capacity. In this study, dopamine-functionalized reduced graphene oxide (rGO)/PLLA composite nanofibers were fabricated via electrospinning. The morphology and the physicochemical and biological properties of the composite nanofibers were investigated. The results indicate that incorporating rGO improves the hydrophilic, mechanical, and biocompatibility properties of PLLA nanofibers. Tetracycline hydrochloride (TC)-loaded rGO/PLLA composite nanofibers showed better controlled drug release profiles compared to GO/PLLA and PLLA nanofibrous scaffolds. Drug-loaded nanofibrous scaffolds showed significantly improved antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Additionally, rGO/PLLA composite nanofibers exhibited enhanced cytocompatibility. Thus, it can be concluded that rGO/PLLA composite nanofibers allow the development of multifunctional scaffolds for use in biomedical applications.

4.
RSC Adv ; 10(64): 39295-39303, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-35518440

ABSTRACT

Photocatalytic materials with high efficiency and convenient recyclability have attracted great interest for the treatment of printing and dyeing wastewater. In this paper, a narrow band gap BiVO4 photocatalyst was loaded onto Ag modified cotton fabric by a hydrothermal method. The prepared composite materials were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible light absorption spectroscopy (UV-vis). The composite materials as prepared show superb photocatalytic activity and reusable performance for the degradation of C.I. Reactive Black 5 (RB5). The degradation rate can reach 99% within 90 min under 1 kW xenon lamp irradiation, and over 90% of the photocatalytic performance is preserved even after five recycles. Furthermore, the photocatalytic mechanism was proposed by spectral analysis and free radical trapping experiments.

5.
ACS Appl Mater Interfaces ; 11(16): 14944-14951, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30920793

ABSTRACT

Graphene-based e-textiles have attracted great interest because of their promising applications in sensing, protection, and wearable electronics. Here, we report a scalable screen-printing process along with continuous pad-dry-cure treatment for the creation of durable graphene oxide (GO) patterns onto viscose nonwoven fabrics at controllable penetration depth. All the printed nonwovens show lower sheet resistances (1.2-6.8 kΩ/sq) at a comparable loading, as those reported in the literature, and good washfastness, which is attributed to the chemical cross-linking applied between reduced GO (rGO) flakes and viscose fibers. This is the first demonstration of tunable penetration depth of GO in textile matrices, wherein GO is also simultaneously converted to rGO and cross-linked with viscose fibers in our processes. We have further demonstrated the potential applications of these nonwoven fabrics as physical sensors for compression and bending.

6.
RSC Adv ; 8(43): 24665-24672, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-35539183

ABSTRACT

Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers (ACFs) and characterize the obtained composite by several instrumental techniques, using Reactive Black KN-B (RB5) as a model pollutant for photocatalytic performance evaluation and establishing the experimental conditions yielding maximal photocatalytic activity. The photocatalytic degradation of RB5 is well fitted by a first-order kinetic model, and the good cycling stability and durability of BiVO4@ACFs highlight the potential applicability of the proposed composite. The enhanced photocatalytic activity of BiVO4@ACFs compared to those of BiVO4 and ACFs individually was mechanistically rationalized, and the suggested mechanism was verified by ultraviolet-visible spectroscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, and RB5 degradation experiments. Thus, this work contributes to the development of BiVO4@ACF composites as effective photocatalysts for environmental remediation applications.

7.
RSC Adv ; 8(26): 14414-14421, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540792

ABSTRACT

In this study, we developed a new synthesis method for modifying activated carbon fibers (ACFs) by dopamine with oxidation-based self-polymerization (DA-ACFs). In addition, laccase was immobilized on the surface of unmodified ACFs (L-ACFs) and DA-ACFs (LDA-ACFs) via cross-linking after being incubated for 12 h at 5 °C. The surface composition and microstructure of the samples were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier-transform infrared reflection and thermo-gravimetric analysis. The optimized laccase concentration for preparing the samples was 2.0 g L-1. The results demonstrated that the successful poly-dopamine modification increased the catalytic abilities of the ACFs in terms of biocompatibility and hydrophilicity. Compared with free laccase, the immobilized laccase exhibited significantly higher relative activity over a pH range of 3.5-6.5 and a temperature range of 30-60 °C; the thermo-stability increased, and 50% relative activity of the LDA-ACFs remained after 5 h at 55 °C. After six cycles of reuse, the relative activity of LDA-ACFs remained ≥60%, compared to 40% activity remaining for L-ACFs, and long-term storage stability was demonstrated. Moreover, the kinetic parameters (K m) of the two immobilized laccases were both higher than that of free laccase, whereas the maximum velocities (V max) were lower. These results indicate that the DA-ACFs are economical, simple, and efficient carries for enzyme immobilization, and can be suitable for further biotechnology and environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...