Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38564637

ABSTRACT

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

2.
Small ; : e2311205, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267814

ABSTRACT

Urea, as one of the most sustainable organic solutes, denies the high salt consumption in commercial electrolytes with its peculiar solubility in water. The bi-mixture of urea-H2 O shows the eutectic feature for increased attention in aqueous Zn-ion electrochemical energy storage (AZEES) technologies. While the state-of-the-art aqueous electrolyte recipes are still pursuing the high-concentrated salt dosage with limited urea adoption and single-anion selection category. Here, a dual-anion urea-based (DAU) electrolyte composed of dual-Zn salts and urea-H2 O-induced solutions is reported, contributing to a stable electric double-layer construction and in situ organic/inorganic SEI formation. The optimized ZT2 S0.5 -20U electrolytes show a high initial Coulombic efficiency of 93.2% and durable Zn-ion storage ≈4000 h regarding Zn//Cu and Zn//Zn stripping/plating procedures. The assembled Zn//activated carbon full cells maintain ≈100% capacitance over 50 000 cycles at 4 A g-1 in coin cell and ≈98% capacitance over 20 000 cycles at 1 A g-1 in pouch cell setups. A 12 × 12 cm2 pouch cell assembly illustrates the practicality of AZEES devices by designing the cheap, antifreezing, and nonflammable DAU electrolyte system coupling proton donor-acceptor molecule and multi-anion selection criteria, exterminating the critical technical barriers in commercialization.

3.
iScience ; 26(12): 108470, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077143

ABSTRACT

Sodium-ion batteries (SIBs) with abundant resource and high safety are attracting intensive interest from both research and industry communities in meeting the ever-increasing energy demands. Despite the rapid advance of SIBs, it is difficult yet necessary to enhance the cycling and rate performance at anode due to the sluggish kinetics of "fat" Na+. This review provides an overview of two-dimensional (2D) nanomaterials with a short ion diffusion pathway and a superior active sites exposure from the perspectives of synthesis, material chemistry, and structure engineering. We present the design principle of ideal carbon materials in SIBs. Moreover, we discuss the structure and chemistry regulations of different 2D materials to promote the efficient ion mass transfer and storage according to the different mechanisms of alloying, conversion, and insertion. Finally, we propose the remaining challenges and the possible solutions, in hope of guiding the future development of this booming field.

4.
ACS Nano ; 17(23): 24012-24021, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38019270

ABSTRACT

Sodium-ion batteries (SIBs) are attracting worldwide attention due to their multiple merits including abundant reserve and safety. However, industrialization is challenged by the scarcity of high-performance carbon anodes with high specific capacities. Here, we report the metal-assisted microcrystalline structure regulation of carbon materials to achieve high-capacity sodium storage. Systematic investigations of in situ thermal-treatment X-ray diffraction and multiple spectroscopies uncover the regulation mechanism of constructing steric hindrance (C-O-C bonds) to restrain the aromatic polycondensation reaction. The carbon precursor of polycyclic aromatic hydrocarbon-type pitch contributes to a high carbon yield rate (40%) compared with those of resin and biomass precursors. The as-synthesized carbon materials deliver high capacities of up to 390 mAh g-1, surpassing many reported carbon anodes for SIBs. Through correlating specific capacity with ID/IG values in Raman spectra and theoretical calculation of carbon materials regulated by different metal elements (Mn, Nb, Ce, Cr, and V), we identify and propose the binding energy as the descriptor for characterizing the capability of regulating the carbon microcrystalline structure to promote sodium storage. This work provides a universal method for regulating the carbon structure, which may lead to the controlled design and fabrication of carbon materials for energy storage and conversion and beyond.

5.
Angew Chem Int Ed Engl ; 62(33): e202307475, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37318899

ABSTRACT

The brain-storm of designing low-cost and commercialized eutectic electrolytes for zinc (Zn)-based electrochemical energy storage (ZEES) remains unresolved and attractive, especially when implementing it at low temperatures. Here, we report an appealing layout of advancing chlorine-functionalized eutectic (Cl-FE) electrolytes via exploiting Cl anion-induced eutectic interaction with Zn acetate solutions. This novel eutectic liquid shows high affinity to collaborate with 1,3-dioxolane (DOL) and is prone to constitute Cl-FE/DOL-based electrolytes with a unique inner/outer eutectic solvation sheath for the better regulation of Zn-solvating neighboring and reconstruction of H-bonding. The side reactions are effectively restricted on Zn anodes and a high Coulombic efficiency of 99.5 % can be achieved over 1000 cycles at -20 °C with Zn//Cu setups. By prototyping scale-up Zn-ion pouch cells using the optimal eutectic liquid of 3ZnOAc1.2 Cl1.8 -DOL, we obtain improved electrochemical properties at -20 °C with a high capacitance of 203.9 F g-1 at 0.02 A g-1 in a range of 0.20-1.90 V and long-term cycling ability with 95.3 % capacitance retention at 0.2 A g-1 over 3,000 cycles. Overall, the proposal of ideal Cl-FE/DOL-based electrolytes guides the design of sub-zero and endurable aqueous ZEES devices and beyond.

6.
Int J Biol Macromol ; 234: 123699, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801295

ABSTRACT

Binder use results in an expansion of the dead volume of the active material and a decline in the active sites, which will lead to a decrease in the electrochemical activity of the electrode. Therefore, the construction of electrode materials without the binder has been the research focus. Here, a novel ternary composite gel electrode without the binder (reduced graphene oxide/sodium alginate/copper cobalt sulfide, rGSC) were designed using a convenient hydrothermal method. Benefiting from the dual-network structure of rGS via the hydrogen bonding between rGO and sodium alginate not only better encapsulates CuCo2S4 with high pseudo-capacitance, but also simplifies the electron transfer path, and reduces the electron transfer resistance, which leads to a remarkable enhanced electrochemical performance. The rGSC electrode exhibits a specific capacitance of up to 1600.25 F g-1 when the scan rate is 10 mV s-1. The asymmetric supercapacitor was constructed with rGSC and activated carbon as the positive and negative electrode in a 6 M KOH electrolyte. It has a large specific capacitance and high energy/power density (10.7 Wh kg-1/1329.1 W kg-1). This work proposes a promising strategy for designing gel electrodes for higher energy density and larger capacitance without the binder.


Subject(s)
Alginates , Charcoal , Copper , Electric Capacitance , Electrodes
7.
Environ Res ; 218: 114949, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36495960

ABSTRACT

In this study, to improve the soil amendment performance of film materials, composite films with the adjustable number of layers and controlled slow-release time were prepared using sodium alginate (SA), chitosan (CS) and activated charcoal (AC) as raw materials. The prepared multilayer films exhibited a wide pH response range and excellent slow-release time. The cumulative release of humic acid (HA) increased from 19.87 ± 0.98% to 66.72 ± 1.06% with increasing the pH from 4.0 to 10.0 after 700 h of slow-release. In addition, after 50 d of remediation in red soil, plantation soil, and saline soil, the NH4+-N, Olsen-P, Olsen-K, and organic matter contents in the three soils were increased by 2.91-28.62 mg/kg, 46.97-70.43 mg/kg, 55.89-77.01 mg/kg, and 12.47-22.52 g/kg, respectively, and were able to provide sustained crop growth promotion effect. This study demonstrates the promising application of multilayer film in soil remediation and agricultural production.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Humic Substances/analysis , Charcoal/chemistry , Agriculture , Soil Pollutants/analysis
8.
J Colloid Interface Sci ; 616: 584-594, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35228053

ABSTRACT

Layered double hydroxides (LDHs) often require the use of carbon materials to improve their stability, conductivity, and specific surface area to accommodate new directions in the development of high-performance energy storage materials. Herein, 2D nickel cobalt layered double hydroxide (NCLDH) nanosheets are regulated to form 3D flower-like spheres by fungus bran-derived carbon dots (CDs) via an in situ growth method. The prepared sample (CDs/NCLDH) shows abundant accessible active sites and favorable electrical conductivity, which is aided by strong interactions between CDs and NCLDH. The optimized CDs/NCLDH exhibits significantly enhanced electrochemical performances, including ultrahigh specific capacitance (2100F g-1 at 1 A g-1) and a great rate capability, which are two times higher than those of the NCLDH electrode. Additionally, the asymmetric supercapacitor device assembled with the CDs/NCLDH positive electrode and the fungus bran-derived activated carbon (FBC) negative electrode achieves a superior energy density of 52.5 Wh kg-1 at an ultrahigh powder density of 750 W kg-1. With their simple synthesis method and excellent electrochemical performance, the role of the CDs provides new insights for the development of LDHs with improved performance.


Subject(s)
Hydroxides , Nickel , Biomass , Cobalt/chemistry , Electrodes , Hydroxides/chemistry , Nickel/chemistry
9.
J Agric Food Chem ; 69(45): 13386-13397, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730340

ABSTRACT

In this work, pH-responsive gel spheres for controlled release of humic acid (CSGCHs) were prepared by an integrated instillation technology using a composite material of sodium alginate (SA) and charcoal activated carbon (CAC) as a carrier, and their slow-release performance, pH-responsive performance, and soil amendment performance were investigated. The results showed that the prepared CSGCH was uniform in size with obvious base responsiveness. Soil remediation experiments revealed that CSGCH could play a good role in the remediation of different types of soils. After 50 days of remediation, the content of nutrients and organic matter in the soil increased significantly and the pH and salt content of saline soils decreased by 15.2 and 29.8%, respectively. The plant experiment showed that CSGCH could effectively promote the growth of crops. Therefore, the prepared soil conditioner has a great potential value for improving soil conditions and promoting crop growth in agricultural applications.


Subject(s)
Charcoal , Soil Pollutants , Alginates , Biomass , Delayed-Action Preparations , Humic Substances , Hydrogen-Ion Concentration , Soil , Soil Pollutants/analysis , Technology
10.
Int J Biol Macromol ; 162: 310-319, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32569682

ABSTRACT

CuS/ZnS/sodium alginate/reduced graphene oxide nanocomposites (CZSrG) were prepared by physical crosslinking followed by one-step reduction and were justified as green binder-free hydrogel high-capacitance electrodes. The physical crosslinking was realized simply through the hydrogen-bond interaction between sodium alginate (SA) and graphene oxide (GO), avoiding the usage of traditional Ca2+ crosslinking agent. The hydrogel structure made of CZSrG possessed the most beneficial effect of avoiding large volume change and increasing cycle stability for supercapacitors. When used as electrode, the specific capacitance of CZSrG was 992 F·g-1 (10 mV·s-1) in a three-electrode system. Furthermore, the fabricated supercapacitors had a specific capacitance of 252.1 F·g-1 (5 mV·s-1), and a power density of 1800 Wh·kg-1 at the energy density of 2.05 Wh·kg-1. Thus, the CZSrG has a favorable electrochemical performance and wide application prospects in supercapacitors.


Subject(s)
Alginates/chemistry , Copper/chemistry , Electric Capacitance , Electrochemistry/methods , Graphite/chemistry , Nanogels/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Cross-Linking Reagents/chemistry , Electrochemistry/instrumentation , Electrodes , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanogels/ultrastructure , Sulfides/chemical synthesis , Zinc Compounds/chemical synthesis
11.
Chemosphere ; 259: 127389, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32590175

ABSTRACT

Metal-organic frameworks (MOFs) are promising for photocatalysis owing to their excellent structure and performance. Unfortunately, poor stability in both aqueous solutions and high temperatures and lack of adsorption centers during reactions limit their practical applications. Herein, a bimetallic MOF anchored corncob calcined derived activated carbon (CCAC) was successfully prepared by a one-step solvothermal method. Benefiting from unique structures and synergetic effect, the porous carbon provided a high specific surface area for stable MOF support and served as an organic pollutant buffer-reservoir, which was advantageous for efficient photocatalytic degradation of organic pollutants. The optimized MOF/CCAC-5 samples possessed excellent visible light degradation rate, i.e., 100% for Rh B, more than 96% for six mixed dyes, and 98% for tetracycline. This prominent photocatalytic activity was caused by active species, including photoelectrons (e-), photo-holes (h+) and superoxide free radicals (•O2-). The transient photocurrent response and electrochemical impedance tests showed that MOF/CCAC-5 exhibited a relatively high charge separation and low carrier recombination rate. Cyclic and simulation experiments indicated high reusability, stability and universality of the composite photocatalysts. These exciting results provide new pathways for the fabrication of MOFs anchored porous carbon materials.


Subject(s)
Environmental Pollutants/chemistry , Metal-Organic Frameworks , Adsorption , Catalysis , Charcoal , Coloring Agents , Light , Porosity , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...