Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(10): 17362-17372, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858921

ABSTRACT

Target detection is significant in many fields, including oceanic security, marine ecology, etc. In this paper, phase sensitive optical time domain reflectometry (Φ-OTDR) is introduced for the non-cooperative ship detection, with large-scale diversity technology and suspended sensitized optical cable. In outfield experiments, the ship's voiceprint information is obtained in high fidelity, the ship's power spectrum is analyzed, and the over-top detection is achieved. Moreover, an array orientation method based on adaptive phase difference correction (APDC) is proposed to track the ship, suppressing the delay jitter influence of acoustic transmission underwater. This is the first time that voiceprint information of the non-cooperative ship is high-fidelity acquired and deeply analyzed with Φ-OTDR and suspended sensitized optical cable, which is conducive to the detection and identification of marine targets, and proves the potential of Φ-OTDR in hydroacoustic detection applications.

2.
Appl Opt ; 61(13): 3761-3770, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36256418

ABSTRACT

The delayed self-heterodyne and self-homodyne (DSH) method is widely used for measuring the line shapes of high coherent lasers. This method results in an autocorrelation of a laser line under the condition of a delay that is much larger than its coherent time. In practice, the delay is often not so long, especially for very narrow linewidth lasers, resulting in errors in rebuilding the laser's line shape from the DSH line. Many papers were devoted to the topic, but most of them are based on the formula for white noise. Analytical formulas of phase variance for 1/f noises are presented in this paper; the DSH line shapes for different noise types and different delay lengths are simulated based on the formulas. Some experimental data of the DSH line, combined with the power spectral density of frequency noise, are processed, showing good agreement with the theoretical analysis. It is indicated that the DSH line shape shows complicated behaviors varied with the delay, with noise types, and with the measurement duration. Such effects are to be compensated for in retrieving the laser's linewidth from the DSH data.

3.
Sensors (Basel) ; 21(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833536

ABSTRACT

Phase-sensitive optical time domain reflectometer (Φ-OTDR) has attracted attention in scientific research and industry because of its distributed dynamic linear response to external disturbances. However, the signal-to-noise ratio (SNR) of Φ-OTDR is still a limited factor by the weak Rayleigh Backscattering coefficient. Here, the multi-transverse modes heterodyne matched-filtering technology is proposed to improve the system SNR. The capture efficiency and nonlinear threshold are increased with multiple transverse modes in few-mode fibers; the incident light energy is permitted to be enlarged by a wider probe pulse by using heterodyne matched-filtering without spatial resolution being deteriorated. As far as we know, this is the first time that both multi-transverse modes integration method and digital heterodyne matched filtering method have been used to improve the SNR of Φ-OTDR simultaneously. Experimental results show that the noise floor is reduced by 11.4 dB, while the target signal is kept. We believe that this proposed method will help DAS find important applications in marine acoustic detection and seismic detection.

4.
Opt Express ; 29(3): 3147-3162, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770920

ABSTRACT

In this letter, a distributed optical fiber hydrophone (DOFH) based on Φ-OTDR is demonstrated and tested in the field. The specially designed sensitized optical cable with sensitivity up to -146 dB rad/µPa/m is introduced, and an array signal processing model for DOFH is constructed to analyze the equivalence and specificity of the distributed array of acoustic sensors. In the field test, a 104-meter-long optical cable and a Φ-OTDR system based on heterodyne coherent detection (Het Φ-OTDR) is utilized, and underwater acoustic signal spatial spectrum estimation, beamforming and motion trajectory tracking with high accuracy can be realized. As far as we know, this is the first report on the field trial of DOFH based on Φ-OTDR. The DOFH has the potential to achieve an array range of tens of kilometers, with elements spaced up to the meter level and flexible configuration, which has a broad application prospect for marine acoustic detection.

5.
Opt Lett ; 45(20): 5672-5675, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057255

ABSTRACT

Distributed fiber acoustic sensing (DAS) can detect almost all disturbances along the sensing fiber and is widely applied. However, the signals from multiple adjacent disturbance sources are superimposed, according to the sensing principle. A directionally coherent enhancement technology is demonstrated for DAS to suppress multi-source aliasing in air. In preliminary works, two situations are considered for feasibility verification. The submerged weak target signal is effectively extracted from strong broadband noise, and two different same-frequency signals from two sources are separately rebuilt with the same detected signal. As far as we know, this is the first time that the directionally coherent enhancement is proposed for DAS and the multi-source aliasing is suppressed. This technique will help DAS find new important foreground in acoustic detection of large-scale plants with many similar noisy devices, including discharge detection in high voltage substations and acoustic emission flaw detection in mechanical factories.

6.
Opt Express ; 27(17): 23682-23692, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510269

ABSTRACT

Influenced by severe ambient noises and nonstationary disturbance signals, multi-class event classification is an enormous challenge in several long-haul application fields of distributed vibration sensing technology (DVS), including perimeter security, railway safety monitoring, pipeline surveillance, etc. In this paper, a deep dual path network is introduced into solving this problem with high learning capacity. The spatial time-frequency spectrum datasets are built by utilizing the multidimensional information of DVS signal, especially the spatial domain information. With the novel datasets and a high-parameter-efficiency network, the proposed scheme presents good reliability and robustness. The feasibility is verified in an actual railway safety monitoring field test, as a proof-of-concept. Seven types of real-life disturbances were implemented and their f1-scores all reached up to 97% in the test. The performance of this proposed approach is fully evaluated and discussed. The presented approach can be employed to improve the performance of DVS in actual applications.

7.
Opt Lett ; 43(16): 3973-3976, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106930

ABSTRACT

Characteristics of intensity noise of optically pumped vertical-cavity surface-emitting lasers and solid-state lasers, induced by the beating of the main lasing mode and non-lasing side modes and its reduction, have been reported in recent years. The mode beating noise of an external cavity diode laser composed of an electrically pumped edge-emitting laser diode chip is studied experimentally in this Letter. The noises due to the beating of the main mode with the first- to third-order side modes are observed, and multiple sub-peaks in the beating noise are measured. It is assumed that the new phenomena are coming from the enhanced four-wave mixing in the longer-active medium. Intensity noise reduction is also demonstrated by using the second harmonic generation of a beta barium borate crystal as a nonlinear absorber.

8.
Sensors (Basel) ; 18(2)2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29385052

ABSTRACT

It is a basic task in Brillouin distributed fiber sensors to extract the peak frequency of the scattering spectrum, since the peak frequency shift gives information on the fiber temperature and strain changes. Because of high-level noise, quadratic fitting is often used in the data processing. Formulas of the dependence of the minimum detectable Brillouin frequency shift (BFS) on the signal-to-noise ratio (SNR) and frequency step have been presented in publications, but in different expressions. A detailed deduction of new formulas of BFS variance and its average is given in this paper, showing especially their dependences on the data range used in fitting, including its length and its center respective to the real spectral peak. The theoretical analyses are experimentally verified. It is shown that the center of the data range has a direct impact on the accuracy of the extracted BFS. We propose and demonstrate an iterative fitting method to mitigate such effects and improve the accuracy of BFS measurement. The different expressions of BFS variances presented in previous papers are explained and discussed.

9.
Opt Express ; 26(25): 32958-32970, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645455

ABSTRACT

A dynamic noise characterization technique for measuring narrow-linewidth frequency-sweep lasers based on phase reconstruction method is proposed. The phase and the frequency fluctuation power spectral density (PSD) of the swept optical field within a specific time window are recovered mainly by demodulating the differential phase information of the 120-degree phase difference interferometer. Then the details of the laser noise characteristics and the performance evolution law of the frequency sweep process can be observed by investigating the calculated frequency fluctuation PSD. Moreover, the integration time linewidth and Lorentzian linewidth of the swept frequency field can be obtained by introducing the integral algorithm even beyond the limit of PSD physical resolution. Meanwhile, the power of this method is verified by applying it to a kHz-linewidth frequency swept laser source based on high-order modulation-sideband injection-locking. The results show many features of the laser such as specific noise peaks and the laser characteristic evolution rules which could not be measured by other traditional methods.

10.
Opt Lett ; 42(3): 391-394, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146484

ABSTRACT

A high spatial resolution phase-sensitive optical time domain reflectometer (ϕ-OTDR) with an optical frequency-swept pulse (FSP) is proposed, and the experimental results are presented in the Letter. The FSP ϕ-OTDR uses optical pulses with linear frequency modulation with higher pulse energy for longer sensing fiber and uses matched filter in the receiver to compress the processed pulse width. Thus, the contradiction between spatial resolution and the working distance in ordinary ϕ-OTDR is relaxed. A spatial resolution of 30 cm, a sensing distance of 19.8 km, and a signal-to-noise ratio of 10 dB for vibration sensing were obtained experimentally. To our best of our knowledge, this is the first time that a sub-meter spatial resolution over such a long sensing range has been reported in ϕ-OTDR sensors.

11.
Appl Opt ; 55(29): 8185-8188, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27828060

ABSTRACT

We have designed a unique intracavity semiconductor optical amplifier (SOA) structure to suppress the relative intensity noise (RIN) for a fiber DFB laser. By exploiting the gain saturation effect of the SOA, a maximum noise suppression of 30 dB around the relaxation oscillation frequency is achieved, and the whole resonance relaxation oscillation peak completely disappears. Moreover, via a specially designed intracavity SOA structure, the optical intensity inside the SOA will be in a balanced state via the oscillation in the laser cavity, and the frequency noise of the laser will not be degraded with the SOA.

12.
Opt Lett ; 40(22): 5192-5, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565832

ABSTRACT

A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

13.
Opt Express ; 23(17): 22386-93, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368208

ABSTRACT

A laser phase and frequency noise measurement method by an unbalanced Michelson interferometer composed of a 3 × 3 optical fiber coupler is proposed. The relations and differences of the power spectral density (PSD) of differential phase and frequency fluctuation, PSD of instantaneous phase and frequency fluctuation, phase noise and linewidth are derived strictly and discussed carefully. The method obtains the noise features of a narrow linewidth laser conveniently without any specific assumptions or noise models. The technique is also used to characterize the noise features of a narrow linewidth external-cavity semiconductor laser, which confirms the correction and robustness of the method.

14.
Opt Express ; 23(6): 7038-43, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837048

ABSTRACT

An ultrafast optical frequency sweeping technique for narrow linewidth lasers is reported. This technique exploits the large frequency modulation bandwidth of a wideband voltage controlled oscillator (VCO) and a high speed electro-optic dual parallel Mach-Zehnder modulator (DPMZM) which works on the state of carrier suppressed single sideband modulation(CS-SSB). Optical frequency sweeping of a narrow linewidth fiber laser with 3.85 GHz sweeping range and 80 GHz/µs tuning speed is demonstrated, which is an extremely high tuning speed for frequency sweeping of narrow linewidth lasers. In addition, injection locking technique is adopted to improve the sweeper's low optical power output and small side-mode suppression ratio (SMSR).

15.
Opt Express ; 23(4): 4970-80, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836532

ABSTRACT

A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

16.
Chemosphere ; 123: 87-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25563166

ABSTRACT

Field experiments were conducted to explore the effects of different sewage sludge amendment strategies on the accumulation and translocation of polybrominated diphenyl ethers (PBDEs) in soil-wheat systems. Two types of application methods (single or annual application) and four annual application rates (5, 10, 20, and 40 t ha(-1) year(-1)) were investigated. BDE 209 was detected in all of the sewage sludge amended soils and different parts of wheat plants collected from the contaminated soils. However, the other seven PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 183) were not detected or were only observed at very low levels. A single application of sewage sludge in large quantities would likely increase accumulation of BDE 209 in soil and its subsequent uptake and translocation by wheat. The concentrations of BDE 209 in soils, wheat roots and straws increased with the increasing sewage sludge application rate. There is a negative correlation between the root accumulation factors (the ratios of concentrations in wheat roots to those in soils) and soil total organic carbon (R(2)=0.84,P<0.05), demonstrating that the bioavailability of BDE 209 was controlled by the soil total organic carbon. BDE 209 concentrations in the grains from the sewage sludge amended soils were not significantly different from those of the control soils, suggesting that atmospheric deposition was the main source of BDE 209 detected in the grains.


Subject(s)
Agriculture , Halogenated Diphenyl Ethers/metabolism , Sewage/analysis , Soil Pollutants/metabolism , Triticum/metabolism , Biological Availability , Environmental Monitoring
17.
Opt Express ; 22(13): 15757-62, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977834

ABSTRACT

The frequency of a distributed feedback diode laser (DFB-LD) is stabilized on Cesium ((133)Cs) D(2) saturated absorption lines by the polarization rotated optical feedback method (PROF). Different from the conventional frequency stabilization methods by adjusting the LD pump current, no extra electrical feedback is needed with the PROF. The self-homodyne beat spectra FWHM linewidth of the DFB laser is measured to be 1.1 MHz, greatly reduced by a factor of about 40 from its free-running linewidth of 44 MHz; and the optical frequency drift is reduced from 96 MHz down to 6.6 MHz.

18.
Bioresour Technol ; 163: 193-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24813387

ABSTRACT

Wheat straw biochars produced at 400, 600 and 800°C (BC400, BC600 and BC800) were used to selectively adsorb PAHs from soil washing effluents. For soil washing effluents contained Phenanthrene (PHE), Fluoranthene (FLU), Pyrene (PYR) and Triton X-100 (TX100), biochars at 2 (for BC800) or 6 g L(-1) (for BC400 and BC600) can remove 71.8-98.6% of PAHs while recover more than 87% of TX100. PAH removals increase with increasing biochar dose. However, excess biochar is detrimental to the recovery of surfactant. For a specific biochar dose, PAH removal and TX100 loss increase with increasing pyrolytic temperature. For BC400 and BC600, PAH removal follows the order of PHE>FLU>PYR, while the order is reversed with PYR>FLU>PHE for BC800. Biochars have much higher sorption affinity for PAHs than for TX100. It is therefore suggested that biochar is a good alternative for selective adsorption of PAHs and recovery of TX100 in soil washing process.


Subject(s)
Charcoal , Hot Temperature , Polycyclic Aromatic Hydrocarbons/isolation & purification , Soil Pollutants/isolation & purification , Adsorption , Surface-Active Agents/chemistry
19.
Appl Opt ; 53(12): 2632-7, 2014 Apr 20.
Article in English | MEDLINE | ID: mdl-24787589

ABSTRACT

We have demonstrated laser frequency offset locking via the Rb87 tripod-type double-dark resonances electromagnetically induced transparency (EIT) system. The influence of coupling fields' power and detuning on the tripod-type EIT profile is studied in detail. In a wide coupling field's detuning range, the narrower EIT dip has an ultranarrow linewidth of ∼590 kHz, which is about one order narrower than the natural linewidth of Rb87. Without the additional frequency stabilization of the coupling lasers, we achieve the relative frequency fluctuation of 60 kHz in a long time of ∼2000 s, which is narrower than the short-time linewidth of each individual laser.

20.
Appl Opt ; 52(3): 530-7, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-23338204

ABSTRACT

A coupled-mode equation (CME) of twisted birefringent fiber is presented in this paper, which uses the degenerate polarization modes of single-mode fibers as eigenmodes in a unified coordinate. The inconsistency between the coordinate and the rotating principal axis, existing in the previous CME, is solved by conversion to the lab coordinate. The CME gives self-consistent results for fibers with high birefringence or low birefringence and for single-mode fibers as well. Analyses and simulations show the CME gives characteristics of twisted birefringent fiber coincident with the property of polarization-maintaining fibers.

SELECTION OF CITATIONS
SEARCH DETAIL