Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2403775, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738804

ABSTRACT

Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.

2.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669991

ABSTRACT

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Subject(s)
Carbon , Infrared Rays , Particle Size , Photothermal Therapy , Polylysine , Quantum Dots , Polylysine/chemistry , Carbon/chemistry , Animals , Quantum Dots/chemistry , Mice , Humans , Mice, Inbred BALB C , Surface Properties , Female , Cell Survival/drug effects , Neoplasms/therapy , Neoplasms/pathology
3.
Nano Lett ; 24(10): 3028-3035, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38411557

ABSTRACT

Multicolor afterglow patterns with transparent and traceless features are important for the exploration of new functionalities and applications. Herein, we report a direct in situ patterning technique for fabricating afterglow carbon dots (CDs) based on laser direct writing (LDW) for the first time. We explore a facile step-scanning method that reduces the heat-affected zone and avoids uneven heating, thus producing a fine-resolution afterglow CD pattern with a minimum line width of 80 µm. Unlike previous LDW-induced luminescence patterns, the patterned CD films are traceless and transparent, which is mainly attributed to a uniform heat distribution and gentle temperature rise process. Interestingly, by regulating the laser parameters and CD precursors, an increased carbonization and oxidation degree of CDs could be obtained, thus enabling time-dependent, tunable afterglow colors from blue to red. In addition, we demonstrate their potential applications in the in situ fabrication of flexible and stretchable optoelectronics.

4.
Nano Lett ; 24(6): 1859-1866, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38289656

ABSTRACT

Afterglow materials with time-dependent color output emerge as huge prospects in advanced optical information encryption but remain a formidable challenge due to the limited exciton transfer from a single emission center. Here, multiple time-dependent afterglow color evolutions are achieved by the strategy of controllable assembly of dual carbon dots (CDs) with an individual afterglow color and decay rate into an RHO zeolite. The strategy possesses high controllability such that B-CDs and G-CDs can be independently generated and in situ embedded into a matrix; in particular, the doped amount of two kinds of CDs can be adjusted conveniently to produce interesting variable afterglow colors. Triggered by different excitations, the prepared B&G-CDs@RHO composites exhibit the conversion of TADF and RTP behaviors, as well as time-dependent afterglow color output from deep-blue to green (365 nm excitation) and static cyan (254 nm excitation). The unique luminescence and excellent stability allow the composite applied in information encryption with high-security levels.

5.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38052724

ABSTRACT

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

6.
J Phys Chem Lett ; 14(50): 11522-11528, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38091348

ABSTRACT

The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.

7.
Mater Horiz ; 10(9): 3680-3693, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37365987

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their intrinsic safety, environmental friendliness, and low cost. However, the uncontrollable Zn dendrite growth during cycling is still a critical challenge for the long-term operation of ZIBs, especially under harsh lean-Zn conditions. Herein, we report nitrogen and sulfur-codoped carbon quantum dots (N,S-CDs) as zincophilic electrolyte additives to regulate the Zn deposition behaviors. The N,S-CDs with abundant electronegative groups can attract Zn2+ ions and co-deposit with Zn2+ ions on the anode surface, inducing a parallel orientation of the (002) crystal plane. The deposition of Zn preferentially along the (002) crystal direction fundamentally avoids the formation of Zn dendrites. Moreover, the co-depositing/stripping feature of N,S-CDs under an electric field force ensures the reproducible and long-lasting modulation of the Zn anode stability. Benefiting from these two unique modulation mechanisms, stable cyclability of the thin Zn anodes (10 and 20 µm) at a high depth of discharge (DOD) of 67% and high Zn||Na2V6O16·3H2O (NVO, 11.52 mg cm-2) full-cell energy density (144.98 W h Kg-1) at a record-low negative/positive (N/P) capacity ratio of 1.05 are achieved using the N,S-CDs as an additive in ZnSO4 electrolyte. Our findings not only offer a feasible solution for developing actual high-energy density ZIBs but also provide in-depth insights into the working mechanism of CDs in regulating Zn deposition behaviors.

8.
Adv Mater ; 35(35): e2302705, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37216626

ABSTRACT

Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.


Subject(s)
Neoplasms , Oxygen , Humans , Oxygen/chemistry , Carbon/chemistry , Phototherapy , Light , Neoplasms/therapy , Water , Coloring Agents
9.
J Colloid Interface Sci ; 644: 107-115, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37105034

ABSTRACT

Biocompatible metal-free carbon dots (CDs) with good photo-induced strong oxidation capacity in aqueous solutions are scarce for high-performance photocatalytic antibacterial and tumor therapy. In this work, we achieved effective visible light-induced cell death and antibacterial performance based on biocompatible metal-free CDs. The visible-light-induced reducing ability of the surface electron-withdrawing structure of the CDs allowed for the remaining photo-induced holes with high oxidation capacity to oxidize water molecules and generate hydroxyl radicals. Antibiotic-resistant bacteria were effectively inhibited by the CDs under xenon lamp irradiation with 450 nm long pass filter. Moreover, CD-based tumor photocatalytic therapy in mice was achieved using a xenon lamp with 450 nm long pass filter (0.3 W cm-2).


Subject(s)
Carbon , Neoplasms , Animals , Mice , Carbon/chemistry , Light , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Metals , Water
10.
Angew Chem Int Ed Engl ; 62(22): e202301651, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36997339

ABSTRACT

Two kinds of triphenylamine-derived solid-state emissive carbon dots (CDs) with orange and yellow color are facilely synthesized through solvothermal treatment, taking advantage of the nonplanar structure and good carrier mobility of triphenylamine unit. Theoretical calculations show that the triphenylamine structure could greatly inhibit the direct π-π stacking of aromatic skeletons and enhance the fluorescence properties of CDs in aggregation state. By adopting the CDs as single emissive layer, high-performance orange-color and green-color electroluminescent light-emitting diodes (LEDs) are successfully fabricated, with maximum brightness of 9450/4236 cd m-2 , high current efficiency of 1.57/2.34 cd A-1 and low turn-on voltage of 3.1/3.6 eV are respectively achieved. Significantly, white-color LED device is further prepared. This work provides a universal platform for the construction of novel solid-state emissive CDs with significant applications in photoelectric device.

11.
Small ; 19(31): e2206667, 2023 08.
Article in English | MEDLINE | ID: mdl-36651015

ABSTRACT

Obesity is a major global health problem that significantly increases the risk of many other diseases. Herein, a facile method of suppressing lipogenesis and obesity using L-arginine-functionalized carbon dots (L-Arg@CDots) is reported. The prepared CDots with a negative surface charge form stronger bonds than D-arginine and lysine with L-Arg in water. The L-Arg@CDots in the aqueous solution offer a high photoluminescence quantum yield of 23.6% in the red wavelength region. The proposed L-Arg functionalization strategy not only protects the red emission of the CDots from quenching by water molecules but also enhances the intracellular uptake of L-Arg to reduce lipogenesis. Injection of L-Arg@CDots can reduce the body weight increase in ob/ob mice by suppressing their food intake and shrinking the white adipose tissue cells, thereby significantly inhibiting obesity.


Subject(s)
Carbon , Quantum Dots , Mice , Animals , Carbon/chemistry , Obesity , Arginine , Quantum Dots/chemistry
12.
Small ; 19(31): e2204158, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36216592

ABSTRACT

It is important to reveal the luminescence mechanisms of carbon dots (CDs). Herein, CDs with two types of optical centers are synthesized from citric acid in formamide by a solvothermal method, and show high photoluminescence quantum yield reaching 42%. Their green/yellow emission exhibits pronounced vibrational structure and high resistance toward photobleaching, while broad red photoluminescence is sensitive to solvents, temperature, and UV-IR. Under UV-IR, the red emission is gradually bleached due to the photoinduced dehydration of the deprotonated surface of CDs in dimethyl sulfoxide, while this process is hindered in water. From the analysis of steady-state and time-resolved photoluminescence and transient absorption data together with density functional theory calculations, the green/ yellow emission is assigned to conjugated sp2 -domains (core state) similar to organic dye derivatives stacked within disk-shaped CDs; and the broad red emission-to oxygen-containing groups bound to sp2 -domains (surface state), whereas energy transfer from the core to the surface state can happen.

13.
Colloids Surf B Biointerfaces ; 220: 112869, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244132

ABSTRACT

Recently, red emissive carbon dots (R-CDs) have drawn widespread attention on account of their desirable fluorescence properties and good biocompatibility. Despite great efforts, facile synthesis of R-CDs for cellular imaging remains challenging and the fluorescence mechanism of R-CDs is still elusive. Herein, p-phenylenediamine-derived R-CDs with excitation-independency were successfully obtained through a facile solvothermal approach together with proportional precipitation. The fluorescent solvatochromism of R-CDs is realized, while high polarity leads to higher degree of dipole interaction between R-CDs and different solvents, favoring for emissive red-shift. Furthermore, density functional theory is adopted to explore the optical and electronic characteristics of some polycyclic aromatic molecules. Among different configurations, pyridine nitrogen and carbonyl bonds could relatively increase the charge density and significantly narrow the band gap, which can provide a crucial theoretical basis for the precise preparation of R-CDs. Moreover, R-CDs possess favorable cellular imaging ability, which indicates their potential for a promising candidate as fluorescence probes in bioimaging.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence , Nitrogen , Solvents/chemistry , Fluorescent Dyes/chemistry
14.
Adv Sci (Weinh) ; 9(36): e2205106, 2022 12.
Article in English | MEDLINE | ID: mdl-36307905

ABSTRACT

Rapid, efficient, and precise cancer therapy is highly desired. Here, this work reports solvothermally synthesized photoactivatable Pt(IV)-coordinated carbon dots (Pt-CDs) and their bovine serum albumin (BSA) complex (Pt-CDs@BSA) as a novel orange light-triggered anti-tumor therapeutic agent. The homogeneously distributed Pt(IV) in the Pt-CDs (Pt: 17.2 wt%) and their carbon cores with significant visible absorption exhibit excellent photocatalytic properties, which not only efficiently releases cytotoxic Pt(II) species but also promotes hydroxy radical generation from water under orange light. When triggered with a 589 nm laser, Pt-CDs@BSA possesses the ultrastrong cancer cell killing capacities of intracellular Pt(II) species release, hydroxyl radical generation, and acidification, which induce powerful immunogenic cell death. Activation of Pt-CDs@BSA by a single treatment with a 589 nm laser effectively eliminated the primary tumor and inhibited distant tumor growth and lung metastasis. This study thus presents a new concept for building photoactivatable Pt(IV)-enriched nanodrug-based CDs for precision cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Carbon , Light , Neoplasms/drug therapy , Water
15.
Adv Sci (Weinh) ; 9(23): e2202283, 2022 08.
Article in English | MEDLINE | ID: mdl-35652197

ABSTRACT

Carbon dots (CDs) have attracted significant interest as one of the most emerging photoluminescence (PL) nanomaterials. However, the realization of CDs with dominant near-infrared (NIR) absorption/emission peaks in aqueous solution remains a great challenge. Herein, CDs with both main NIR absorption bands at 720 nm and NIR emission bands at 745 nm in an aqueous solution are fabricated for the first time by fusing large conjugated perylene derivatives under solvothermal treatment. With post-surface engineering, the polyethyleneimine modified CDs (PEI-CDs) exhibit enhanced PL quantum yields (PLQY) up to 8.3% and 18.8% in bovine serum albumin aqueous and DMF solutions, which is the highest PLQY of CDs in NIR region under NIR excitation. Density functional theory calculations support the strategy of fusing large conjugated perylene derivatives to achieve NIR emissions from CDs. Compared to the commercial NIR dye Indocyanine green, PEI-CDs exhibit excellent photostability and much lower cost. Furthermore, the obtained PEI-CDs illustrate the advantages of remarkable two-photon NIR angiography and in vivo NIR fluorescence bioimaging. This work demonstrates a promising strategy of fusing large conjugated molecules for preparing CDs with strong NIR absorption/emission to promote their bioimaging applications.


Subject(s)
Perylene , Quantum Dots , Carbon , Fluorescence , Water
16.
Light Sci Appl ; 11(1): 113, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477575

ABSTRACT

Efficient red emissive carbon dots (CDs) in aqueous solutions are very scarce for high performance bioimaging applications. In this work, we report a one-step solvothermal treatment to synthesize pure red emissive CDs (FA-CDs) from citric acid and urea in formic acid without complicated purification procedures. Photoluminescence quantum yield (PLQY) of 43.4% was observed in their dimethyl sulfoxide solutions. High PLQY up to 21.9% in aqueous solutions was achieved in their bovine serum albumin (BSA) composites (FA-CDs@BSA) with significantly enhanced multi-photon fluorescence. The strong surface electron-withdrawing structure of FA-CDs caused by the high content of C = O groups contributes for their pure red emission. Owing to the significantly enhanced single and multi-photon red fluorescence and enlarged particle sizes after composing with BSA, in vivo tumor imaging and two-photon fluorescence imaging of blood vessels in mouse ear have been realized via intravenous injection of FA-CDs@BSA aqueous solutions.

17.
J Colloid Interface Sci ; 613: 547-553, 2022 May.
Article in English | MEDLINE | ID: mdl-35063786

ABSTRACT

Carbon dots (CDs) emerge as promising luminescent materials for potential applications in optoelectronics on basis of their merits including low cost, eco-friendliness and strong, color-tunable photoluminescence (PL). However, the research on solid-state emissive CDs is still at the primary stage because of the aggregation-caused quenching (ACQ) of PL and their poor film-formation ability. In this work, we produce CDs with branched-polyethylenimine (b-PEI) chemically functionalized on the surfaces. The thus newly synthesized P-CDs successfully overcome the bottleneck of ACQ effect and display efficient red and NIR emission in aggregate state. Under the excitation of 520 nm, a strong red emission (maxima of 640 nm) with a high photoluminescence quantum yield (PLQY) of 21% was observed for the P-CDs in neat film. Moreover, this design strategy endows the P-CDs with good film-formation ability via solution spin-coating, which significantly increases its value for the film-based optoelectronic devices.


Subject(s)
Carbon , Quantum Dots , Luminescence , Polyethyleneimine
18.
Small ; 18(13): e2106863, 2022 04.
Article in English | MEDLINE | ID: mdl-35076167

ABSTRACT

Carbonized polymer dots (CPDs) have received tremendous attention during the last decade due to their excellent fluorescent properties and catalytic performance. Doping CPDs with transition metal atoms accelerates the local electron flow in CPDs and improves the fluorescent properties and catalytic performance of the CPDs. However, the binding sites and the formation mechanisms of the transition-metal-atom-doped CPDs remain inconclusive. In this work, Mn2+ -ion-doped CPDs (Mn-CPDs) are synthesized by the hydrothermal method. The Mn2+ ions form MnO bonds that bridge the sp2 domains of carbon cores and increases the effective sp2 domains in the Mn-CPDs, which redshifts the fluorescence emission peak of the Mn-CPDs slightly. The Mn2+ ions form covalent bonds in the CPDs and remedy the oxygen vacancies of the CPDs, which cuts off the non-radiative-recombination process of the Mn-CPDs and increases the quantum yield of the Mn-CPDs to 70%. Furthermore, the MnO bonds accelerate the electron flow between adjacent sp2 domains and enhances the electron transport in the Mn-CPDs. Thus, the Mn-CPDs demonstrate excellent catalytic performance to activate hydrogen peroxide (H2 O2 ) and produce hydroxyl radicals (•OH) to degrade methylene blue (MB) and rhodamine B (RhB).


Subject(s)
Polymers , Quantum Dots , Carbon/chemistry , Electron Transport , Fluorescence , Polymers/chemistry , Quantum Dots/chemistry
19.
Nanoscale ; 14(2): 361-372, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34878482

ABSTRACT

The construction of nanoplatforms with combined photothermal properties and cascading enzymatic activities has become an active area of anticancer research. However, the overheating of photothermal therapy (PTT) and the specific properties of tumor microenvironment (TME) greatly impaired the therapeutic efficiency. Herein, we rationally fabricated a virus-like SiOx/CeO2/VOx (SCV) nanoplatform for 1064 nm near-infrared (NIR) triggered mild-temperature PTT and nanozyme catalytic therapy. Firstly, the virus-like shape of SiOx/CeO2/VOx made it favorable for cell adhesion and improved its phagocytosis in cells, and the SCV generated an effective PTT effect upon 1064 nm laser irradiation. Particularly, the produced VO2+ in TME could be used as a heat shock protein inhibitor to inhibit the expression of heat shock protein 60 (HSP60) to enhance the PTT efficiency. Moreover, the SCV nanozyme exhibited obvious peroxidase-mimic (POD) catalytic activity, which could generate highly toxic free radical ions (˙OH) under acidic conditions. The mild-temperature heat and ˙OH produced by enzymatic catalysis effectively blocked the tumor growth, as verified firmly by in vitro and in vivo tests. Our designed virus-like SCV nanozyme with POD mimic enzyme activity and a mild photothermal effect may provide a new way of thinking about the combination therapy model.


Subject(s)
Nanoparticles , Photochemotherapy , Catalysis , Photothermal Therapy , Temperature , Tumor Microenvironment
20.
Small ; 17(43): e2102325, 2021 10.
Article in English | MEDLINE | ID: mdl-34365728

ABSTRACT

Carbon dots (CDs) represent a recently emerged class of luminescent materials with a great potential for biomedical theranostics, and there are a lot of efforts to shift their absorption and emission toward deep-red (DR) to near-infrared (NIR) region falling in the biological transparency window. This review offers comprehensive insights into the synthesis strategies aimed to achieve this goal, and the current approaches of modulating the optical properties of CDs over the DR to NIR region. The underlying mechanisms of their absorption, photoluminescence, and chemiluminescence, as well as the related photophysical processes of photothermal conversion and formation of reactive oxygen species are considered. The already available biomedical applications of CDs, such as in the photoacoustic imaging and photothermal therapy, photodynamic therapy, and their use as bioimaging agents and drug carriers are then shortly summarized.


Subject(s)
Carbon , Photochemotherapy , Diagnostic Imaging , Drug Carriers , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL
...