Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38843313

ABSTRACT

Spin-orbit torque (SOT) has emerged as an effective means of manipulating magnetization. However, the current energy efficiency of SOT operation is inefficient due to low damping-like SOT efficiency per unit current bias. In this work, we dope conventional rare earth oxides, GdOy, into highly conductive platinum by magnetron sputtering to form a new group of spin Hall materials. A large damping-like spin-orbit torque (DL-SOT) efficiency of about 0.35 ± 0.013 is obtained in Pt0.70(GdOy)0.30 measured by the spin-torque ferromagnetic resonance (ST-FMR) technique, which is about five times that of pure Pt under the same conditions. The substantial enhancement of the spin Hall effect is revealed by theoretical analysis to be attributed to the strong side jump induced by the rare earth oxide GdOy impurities. Moreover, this large DL-SOT efficiency contributes to a low critical switching current density (8.0 × 106 A·cm-2 in the Pt0.70(GdOy)0.30 layer) in current-induced magnetization switching measurements. This systematic study on SOT switching properties suggests that Pt1-x(GdOy)x is an attractive spin current source with large DL-SOT efficiency for future SOT applications and provides another idea to regulate the spin Hall angle.

2.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38727395

ABSTRACT

The anomalous Hall effect and spin-orbit torque of TbCo-based multilayer films have been methodically studied in recent years. Many properties of the films can be obtained by the anomalous Hall resistance loops of the samples. We report on the effects of a structure composed of two heavy metals as the buffer layers on the anomalous Hall resistance loops of TbCo-based multilayers at different temperatures. The results showed that the coercivity increases dramatically with decreasing temperature, and the samples without perpendicular magnetic anisotropy at room temperature showed perpendicular magnetic anisotropy at low temperatures. We quantified the spin-orbit torque efficiency and Dzyaloshinskii-Moriya interaction effective field size of the films W/Pt/TbCo/Pt at room temperature by measuring the loop shift of anomalous Hall resistance. The results showed that the study of anomalous Hall resistance loops plays an important role in the study of spintronics, which can not only show the basic properties of the sample, but can also obtain other information about the sample through the shift of the loops.

SELECTION OF CITATIONS
SEARCH DETAIL
...