Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35682195

ABSTRACT

Adjusting land use is a practical way to protect the ecosystem, but protecting water resources by optimizing land use is indirect and complex. The vegetation, soil, and rock affected by land use are important components of forming the water cycle and obtaining clean water sources. The focus of this study is to discuss how to optimize the demands and spatial patterns of different land use types to strengthen ecological and water resources protection more effectively. This study can also provide feasible watershed planning and policy suggestions for managers, which is conducive to the integrity of the river ecosystem and the sustainability of water resources. A watershed-scale land use planning framework integrating a hydrological model and a land use model is established. After quantifying the water retention value of land use types through a hydrological model, a multi-objective land use demands optimization model under various development scenarios is constructed. Moreover, a regional study was completed in the source area of the Songhua River in Northeast China to verify the feasibility of the framework. The results show that the method can be used to optimize land use requirements and obtain future land use maps. The water retention capacity of forestland is strong, about 2500-3000 m3/ha, and there are differences among different forest types. Planning with a single objective of economic development will expand the area of cities and cultivated land, and occupy forests, while multi-objective planning considering ecological and water source protection tends to occupy cultivated land. In the management of river headwaters, it is necessary to establish important forest reserves and strengthen the maintenance of restoration forests. Blindly expanding forest area is not an effective way to protect river headwaters. In conclusion, multi-objective land use planning can effectively balance economic development and water resources protection, and find the limits of urban expansion and key areas of ecological barriers.


Subject(s)
Ecosystem , Rivers , China , Conservation of Natural Resources , Forests , Water
2.
Sci Rep ; 12(1): 1314, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079055

ABSTRACT

Western Jilin Province is one of the world's three major saline-alkali land distribution areas, and is also an important area of global climate change and carbon cycle research. Rhizosphere soil microorganisms and enzymes are the most active components in soil, which are closely related to soil carbon cycle and can reflect soil organic carbon (SOC) dynamics sensitively. Soil inorganic carbon (SIC) is the main existing form of soil carbon pool in arid saline-alkali land, and its quantity distribution affects the pattern of soil carbon accumulation and storage. Previous studies mostly focus on SOC, and pay little attention to SIC. Illumina Miseq high-throughput sequencing technology was used to reveal the changes of community structure in three maize fields (M1, M2 and M3) and three rice fields (R1, R2 and R3), which were affected by different levels of salinization during soil development. It is a new research topic of soil carbon cycle in saline-alkali soil region to investigate the effects of soil microorganisms and soil enzymes on the transformation of SOC and SIC in the rhizosphere. The results showed that the root-soil-microorganism interaction was changed by saline-alkali stress. The activities of catalase, invertase, amylase and ß-glucosidase decreased with increasing salinity. At the phylum level, most bacterial abundance decreases with increasing salinity. However, the relative abundance of Proteobacteria and Firmicutes in maize field and Firmicutes, Proteobacteria and Nitrospirae in rice field increased sharply under saline-alkali stress. The results of redundancy analysis showed that the differences of rhizosphere soil between the three maize and three rice fields were mainly affected by ESP, pH and soil salt content. In saline-alkali soil region, ß-glucosidase activity and amylase were significantly positively correlated with SOC content in maize fields, while catalase and ß-glucosidase were significantly positively correlated with SOC content in rice fields. Actinobacteria, Bacteroidetes and Verrucomicrobia had significant positive effects on SOC content of maize and rice fields. Proteobacteria, Gemmatimonadetes and Nitrospirae were positively correlated with SIC content. These enzymes and microorganisms are beneficial to soil carbon sequestration in saline-alkali soils.


Subject(s)
Alkalies/analysis , Carbon/analysis , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/genetics , Rhizosphere , Salinity , Soil Microbiology , Soil/chemistry , Crops, Agricultural/enzymology , Crops, Agricultural/microbiology , High-Throughput Nucleotide Sequencing/methods , Hydrogen-Ion Concentration , Oryza/enzymology , Oryza/microbiology , Zea mays/enzymology , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL