Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119656, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38182060

ABSTRACT

Diabetic cardiomyopathy remains a formidable health challenge with a high mortality rate and no targeted treatments. Growth differentiation factor 11 (GDF11) has shown promising effects on cardiovascular diseases; however, its role and the underlying mechanism in regulating diabetic cardiomyopathy remain unclear. In this study, we developed mouse models of diabetic cardiomyopathy using leptin receptor-deficient (db/db) mice and streptozocin-induced C57BL/6 mice. The diabetic cardiomyopathy model mice exhibited apparent structural damage in cardiac tissues and a significant increase in the expression of apoptosis-related proteins. Notably, we observed a significant decreased expression of GDF11 in the myocardium of mice with diabetic cardiomyopathy. Moreover, GDF11 cardiac-specific knock-in mice (transgenic mice) exhibited improved cardiac function and reduced apoptosis. Moreover, exogenous administration of GDF11 mitigated high glucose-induced cardiomyocyte apoptosis. Mechanistically, we demonstrated that GDF11 alleviated high glucose-induced cardiomyocytes apoptosis by inhibiting the activation of the alkylation repair homolog 5 (ALKBH5)-forkhead box group O3a (FOXO3)-cerebellar degeneration-related protein 1 transcript (CDR1as)/Hippo signaling pathway. Consequently, this novel mechanism effectively counteracted myocardial cell apoptosis, providing valuable insights into potential therapeutic strategies for clinical diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Diabetic Cardiomyopathies/chemically induced , Diabetic Cardiomyopathies/metabolism , Hippo Signaling Pathway , Mice, Inbred C57BL , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Glucose/pharmacology , Glucose/metabolism , Apoptosis/genetics
2.
Vascul Pharmacol ; 147: 107126, 2022 12.
Article in English | MEDLINE | ID: mdl-36351515

ABSTRACT

Diabetic mellitus (DM) complicated with myocardial infarction (MI) is a serious clinical issue that remained poorly comprehended. The aim of the present study was to investigate the role of NAD+ in attenuating cardiac damage following MI in diabetic mice. The cardiac dysfunction in DM mice with MI was more severe compared with the non-diabetic mice and NAD+ administration could significantly improve the cardiac function in both non-diabetic and diabetic mice after MI for both 7 days and 28 days. Moreover, application of NAD+ could markedly reduce the cardiac injury area of DM complicated MI mice. Notably, the level of NAD+ was robustly decreased in the cardiac tissue of MI mice, which was further reduced in the DM complicated mice and NAD+ administration could significantly restore the NAD+ level. Furthermore, NAD+ was verified to facilitate the angiogenesis in the MI area of both diabetic mice and non-diabetic mice by microfil perfusion assay and immunofluorescence. Additionally, we demonstrated that NAD+ promoted cardiac angiogenesis after myocardial infarction in diabetic mice by promoting the M2 polarization of macrophages. At the molecular level, NAD+ promoted the secretion of VEGF in macrophages and therefore facilitating migration and tube formation of endothelial cells. Mechanistically, NAD+ was found to promote the generation of pro-angionesis VEGF165 and inhibit the generation of anti-angionesis VEGF165b via regulating the alternative splicing factors of VEGF (SRSF1 and SRSF6) in macrophages. The effects of NAD+ were readily reversible on deficiency of it. Collectively, our data showed that NAD+ could attenuate myocardial injury via regulating the alternative splicing of VEGF and promoting angiogenesis in diabetic mice after myocardial infarction. NAD+ administration may therefore be considered a potential new approach for the treatment of diabetic patients with myocardial infarction.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Animals , Mice , Alternative Splicing , Endothelial Cells , Macrophages , NAD/pharmacology , NAD/therapeutic use , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A/metabolism
3.
JACC Basic Transl Sci ; 7(9): 880-895, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36317130

ABSTRACT

The most devastating and catastrophic deterioration of myocardial ischemia-reperfusion injury (MIRI) is cardiomyocyte death. Here we aimed to evaluate the role of lncRNA-ZFAS1 in MIRI and delineate its mechanism of action. The level of lncRNA-ZFAS1 was elevated in MIRI hearts, and artificial knockdown of lncRNA-ZFAS1 in mice improved cardiac function. Notch1 is a potential target of lncRNA-ZFAS1, and lncRNA-ZFAS1 could bind to the promoter region of Notch1 and recruit DNMT3b to induce Notch1 methylation. Nicotinamide mononucleotide could promote the expression of Notch1 by competitively inhibiting the expression of DNMT3b and improving the apoptosis of cardiomyocytes and cardiac function.

4.
Eur J Pharmacol ; 922: 174915, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35339477

ABSTRACT

Diabetic cardiomyopathy (DCM), as a major complication of diabetic patients, can cause myocardial metabolic remodeling and lead to severe and irreversible cardiac dysfunction. Previously, we found that the circular RNA cerebellar degeneration-related protein 1 antisense (Circ-CDR1as) independently predicted acute myocardial infarction (AMI) and might be a new indicator marker for this. However, CDR1as was not clearly described in diabetic cardiomyopathy. Therefore, our purpose was to deeply explore the function of CDR1as in DCM. In this study, we found that CDR1as was upregulated in DCM, and knockdown of CDR1as could improve the apoptosis caused by DCM. Mechanistically, CDR1as activates the Hippo signaling pathway by significantly inhibiting Mammalian sterile 20-like kinase 1 (MST1) ubiquitination level. Furthermore, as a transcriptional factor of CDR1as, Forkhead box group O3a (FOXO3) was identified to activate the Hippo signaling pathway. Notably, the total m6A level was downregulated in the cardiac tissue of DCM. Alk B homolog 5 (ALKBH5), a m6A demethylation enzyme, was upregulated in the cardiomyocytes of DCM mice and posttranscriptionally activated FOXO3 by m6A demethylation in an m6A-YTHDF2-dependent manner. Hence, our work reveals the key function of the ALKBH5-FOXO3-CDR1as/Hippo signaling pathway in DCM and provides insight into the critical roles of m6A methylation in DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Animals , Apoptosis/genetics , Diabetes Mellitus/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Hippo Signaling Pathway , Humans , Mammals/genetics , Mice , Myocytes, Cardiac/metabolism , RNA, Circular/genetics , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...