Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Planet Sci J ; 1(3)2020 Dec.
Article in English | MEDLINE | ID: mdl-33294844

ABSTRACT

In 2017, 2018, and 2019, comets 46P/Wirtanen, 45P/Honda-Mrkos-Pajdusakova, and 41P/Tuttle-Giacobini-Kresak all had perihelion passages. Their hydrogen comae were observed by the Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite: comet 46P for the fourth time and comets 45P and 41P for the third time each since 1997. Comet 46P/Wirtanen is one of a small class of so-called hyperactive comets whose gas production rates belie their small size. This comet was the original target comet of the Rosetta mission. The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet 46P/Wirtanen during the apparitions of 1997, 2002, 2008, and 2018. Over the 22 years, the activity decreased and its variation with heliocentric distance has changed markedly in a way very similar to that of another hyperactive comet, 103P/Hartley 2. Comet 45P/Honda-Mrkos-Pajdusakova was observed by SWAN during its perihelion apparitions of 2001, 2011, and 2017. Over this time period the activity level has remained remarkably similar, with no long-term fading or abrupt decreases. Comet 41P/Tuttle-Giacobini-Kresak was observed by SWAN in its perihelion apparitions of 2001, 2006, and 2017 and has decreased in activity markedly over the same time period. In 1973 it was known for large outbursts, which continued during the 2001 (2 outbursts) and 2006 (1 outburst) apparitions. However, over the 2001 to 2017 time period covered by the SOHO/SWAN observations the water production rates have greatly decreased by factors of 10-30 over corresponding times during its orbit.

2.
Astrophys J Lett ; 884(2)2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31807263

ABSTRACT

The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyman-alpha camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2017 S3 (PanSTARRS) for the last month of its activity from 2018 July 4 to August 4 and what appears to have been its final disintegration just 11 days before its perihelion on August 15. The hydrogen coma indicated water production had a small outburst on July 8 at a heliocentric distance of 1.1AU and then a much larger one on July 20 at 0.8 AU. Over the following two weeks the water production dropped by more than a factor of ten after which it was no longer detectable. The behavior is reminiscent of comet C/1999 S4 (LINEAR) in 2000, which had a few small outbursts on its inbound orbit and a major outburst at a heliocentric distance of about 0.8 AU, which was close to its perihelion, followed by its complete disintegration that was documented by several sets of observations including SWAN. C/2017 S3 (PanSTARRS) however had a much larger water production rate than C/1999 S4 (LINEAR). Here we estimate the size of the nucleus of C/2017 S3 just before its final outburst and apparent disintegration was estimated using the total amount of water produced during its last weeks for a range of values of the refractory/ice ratio in the nucleus. We also determine the size distribution of the disintegrating particles as the comet faded.

3.
Icarus ; 317: 610-620, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30270935

ABSTRACT

The Solar Wind Anisotropies (SWAN) instrument on the SOlar and Heliospheric Observatory (SOHO) satellite has observed 44 long period and new Oort cloud comets and 36 apparitions of 17 short period comets since its launch in December 1995. Water production rates have been determined from the over 3700 images producing a consistent set of activity variations over large parts of each comet's orbit. This has enabled the calculation of exponential power-law variations with heliocentric distance of these comets both before and after perihelion, as well as the absolute values of the water production rates. These various measures of overall water activity including pre- and post-perihelion exponents, absolute water production rates at 1 AU, active surface areas and their variations have been compared with a number of dynamical quantities for each comet including dynamical class, original semi-major axis, nucleus radius (when available), and compositional taxonomic class. Evidence for evolution of cometary nuclei is seen in both long-period and short-period comets.

4.
Icarus ; 300: 33-46, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28970625

ABSTRACT

Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (PanSTARRS) and C/2013 X1 (PanSTARRS). Of these 9 comets 6 were long-period comets and 3 were possibly dynamically new. Water production rates were calculated from each of the 885 images using our standard time-resolved model that accounts for the whole water photodissociation chain, exothermic velocities and collisional escape of H atoms. For most of these comets there were enough observations over a broad enough range of heliocentric distances to calculate power-law fits to the variation of production rate with heliocentric distances for pre- and post-perihelion portions of the orbits. Comet C/2014 Q1 (PanSTARRS), with a perihelion distance of only ~0.3 AU, showed the most unusual variation of water production rate with heliocentric distance and the resulting active area variation, indicating that when the comet was within 0.7 AU its activity was dominated by the continuous release of icy grains and chunks, greatly increasing the active sublimation area by more than a factor of 10 beyond what it had at larger heliocentric distances. A possible interpretation suggests that a large fraction of the comet's mass was lost during the apparition.

5.
Nature ; 450(7170): 646-9, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046397

ABSTRACT

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60-100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90-120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the 'cryosphere' above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of approximately 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80-90 km for which we have no explanation.

6.
Science ; 307(5714): 1447-9, 2005 Mar 04.
Article in English | MEDLINE | ID: mdl-15746421

ABSTRACT

Using an absorption cell, we measured the Doppler shifts of the interstellar hydrogen resonance glow to show the direction of the neutral hydrogen flow as it enters the inner heliosphere. The neutral hydrogen flow is found to be deflected relative to the helium flow by about 4 degrees . The most likely explanation of this deflection is a distortion of the heliosphere under the action of an ambient interstellar magnetic field. In this case, the helium flow vector and the hydrogen flow vector constrain the direction of the magnetic field and act as an interstellar magnetic compass.

7.
Science ; 307(5709): 566-9, 2005 Jan 28.
Article in English | MEDLINE | ID: mdl-15681381

ABSTRACT

We detected light emissions in the nightside martian atmosphere with the SPICAM (spectroscopy for the investigation of the characteristics of the atmosphere of Mars) ultraviolet (UV) spectrometer on board the Mars Express. The UV spectrum of this nightglow is composed of hydrogen Lyman alpha emission (121.6 nanometers) and the gamma and delta bands of nitric oxide (NO) (190 to 270 nanometers) produced when N and O atoms combine to produce the NO molecule. N and O atoms are produced by extreme UV photodissociation of O2, CO2, and N2 in the dayside upper atmosphere and transported to the night side. The NO emission is brightest in the winter south polar night because of continuous downward transport of air in this region at night during winter and because of freezing at ground level.


Subject(s)
Mars , Nitric Oxide , Atmosphere , Carbon Dioxide , Extraterrestrial Environment , Hydrogen , Nitrogen , Oxygen , Seasons , Spacecraft , Spectrophotometry, Ultraviolet , Temperature , Ultraviolet Rays
8.
Science ; 292(5520): 1326-9, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11359000

ABSTRACT

The SWAN (Solar Wind ANisotropies) Lyman-alpha all-sky camera on the SOHO spacecraft observed the hydrogen coma of comet C/1999 S4 (LINEAR) from the end of May through mid-August 2000. A systematic set of water-production rates was obtained for this well-documented event of complete fragmentation of a cometary nucleus. The observations indicate that the lower limit for the sunlit surface area of the nucleus was about 1 square kilometer before the fragmentation and that the amount of water released throughout the observing period was 3.3 x 10(9) kilograms. Evidence suggests that the activity of the comet was dominated by successive fragmentation. There were four major outbursts, occurring about every 16 days. The 21 July event led to the complete fragmentation and sublimation of what remained of the nucleus, producing the last 3 x 10(8) kilograms of water. A model where the fragment size distribution follows the power law N(R) approximately R-(2.7), where N and R are the number and radius of fragments, reproduces the observed dissipation. This distribution possibly reflects the internal structure of the nucleus.

9.
Nature ; 405(6784): 321-2, 2000 May 18.
Article in English | MEDLINE | ID: mdl-10830954

ABSTRACT

Several searches for near-Earth objects have recently been initiated, as a result of increased awareness of the hazard of impacts on the Earth. These programs mainly search for asteroids, so amateur astronomers can still contribute to the discovery of comets, especially out of the orbital plane of the Solar System. An ideal way to search for comets would be to use a spaceborne instrument capable of imaging the whole sky on a daily basis in a systematic and repeatable way. Such an instrument already exists on the solar observatory SOHO; it operates at the Lyman-alpha wavelength of neutral hydrogen, which is the main component of the emission cloud of a comet. Here we report the discovery, using archival data from this satellite, of a hitherto unnoticed comet which reached a perihelion of 1.546 a.u. on 26 June 1997. We derive the water production rate of the comet as a function of time and find that it increases after perihelion, like that of comet Halley.

SELECTION OF CITATIONS
SEARCH DETAIL
...