Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 23(10): 1542-1553, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34524328

ABSTRACT

Thousands of dams are currently under construction or planned worldwide to meet the growing need for electricity. The creation of reservoirs could, however, lead to conditions that promote the accumulation of mercury (Hg) in surface sediments and the subsequent production of methylmercury (MeHg). Once produced, MeHg can bioaccumulate to harmful levels in organisms. It is unclear to what extent variations in physical features and biogeochemical factors of the reservoir impact Hg accumulation. The objective of this study was to identify key drivers of the accumulation of total Hg (THg) in tropical reservoir sediments. The concentration of THg in all analyzed depth intervals of 22 sediment cores from the five contrasting reservoirs investigated ranged from 16 to 310 ng g-1 (n = 212, in the different sediment cores, the maximum depth varied from 18 to 96 cm). Our study suggests reservoir size to be an important parameter determining the concentration of THg accumulating in tropical reservoir sediments, with THg ranging up to 50 ng g-1 in reservoirs with an area exceeding 400 km2 and from 100 to 200 ng g-1 in reservoirs with an area less than 80 km2. In addition to the reservoir size, the role of land use, nutrient loading, biome and sediment properties (e.g., organic carbon content) was tested as potential drivers of THg levels. The principal component analysis conducted suggested THg to be related to the properties of the watershed (high degree of forest cover and low degree of agricultural land use), size and age of the reservoir, water residence time and the levels of nutrients in the reservoir. A direct correlation between THg and tested variables was, however, only observed with the area of the reservoir.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Mercury/analysis , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 256: 113343, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31672373

ABSTRACT

Caffeine is one of the most consumed substances, and it has been largely detected in aquatic ecosystems. We investigated the trends in caffeine consumption over three decades and its relationships with gross domestic product (GDP) and human development index (HDI) to understand global patterns and to identify potential hotspots of contamination. The total caffeine consumption is increasing mainly due to population growth. Moreover, caffeine consumption per capita is also increasing in some countries, such as Brazil, Italy, and Ethiopia. A high positive correlation between caffeine consumption per capita with HDI and GDP was found for coffee-importing countries in Europe, while a high negative correlation was found for coffee-exporting countries in Africa. The literature review showed that the highest caffeine concentrations coincide with countries that present an increasing caffeine consumption per capita. Also, approximately 35% of the caffeine concentrations reported in the literature were above the predicted no-effect concentration in the environment and, again, overlaps with countries with increasing per capita consumption. Despite the high degradation rate, caffeine consumption tends to increase in a near future, which may also increase the overall amount of caffeine that comes into the environment, possibly exceeding the thresholds of several species described as tolerant to the current environmental concentrations. Therefore, it is essential to prevent caffeine from reaching aquatic ecosystems, implementing sewage treatment systems, and improving their efficiency.


Subject(s)
Caffeine/analysis , Coffee/chemistry , Gross Domestic Product , Water Pollutants, Chemical/analysis , Brazil , Caffeine/economics , Ecosystem , Ethiopia , Europe , Gross Domestic Product/trends , Humans , Italy
3.
Bull Environ Contam Toxicol ; 103(2): 292-301, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31243473

ABSTRACT

Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil. Results of the bioavailable fraction of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and iron (Fe) in sediment samples are presented. Considering Cu, Cd, and Zn concentrations, about 6% of the samples exceeded the threshold effect levels of sediment quality guidelines. The comparison to sediment quality guidelines is conservative because we used a moderate metal extraction. Control of contaminant sources in these reservoirs is key because they are sources of water and food. The mixture toxicity assessment showed an increased incidence of toxicity to aquatic organisms showing that mixture toxicity should be taken into account in sediment assessment criteria.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Aquatic Organisms/drug effects , Biota/drug effects , Brazil , Humans , Risk Assessment , Tropical Climate
4.
Sci Total Environ ; 671: 505-509, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30933805

ABSTRACT

The incorrect disposal of medicines can be harmful to the environment. Here, we aim to understand the consumption and disposal of medicines in Brazil using online forms. 64% of the respondents have the habit to self-medicate. 66% of respondents dispose the disused or expired medicines in the garbage. 71.9% of respondents never receive any information about correct disposal of medicines. 95.2% of respondents believe that residues of medicines can be harmful to the environment. Environmental education can provide information to the population and help to mitigate pharmaceuticals pollution.


Subject(s)
Health Knowledge, Attitudes, Practice , Medical Waste Disposal/statistics & numerical data , Pharmaceutical Preparations , Brazil , Developing Countries , Drug Utilization , Medical Waste Disposal/methods , Surveys and Questionnaires
5.
Chemosphere ; 215: 753-757, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30347368

ABSTRACT

On November 2015, one of Brazil's most important watersheds was impacted by the mine waste from Fundão dam collapse in Mariana. The mine waste traveled over 600 km along the Doce River before reaching the sea, causing severe devastation along its way. Here we assessed trace element concentrations and cytogenotoxic effects of the released mine waste. Water samples were collected along the Doce River ten days after the disaster in two impacted sites and one non-impacted site. Sampling points were located hundreds of kilometers downstream of the collapsed dam. Water samples were used for trace element quantification and to run an experiment using Allium cepa to test cytogenotoxicity. We found extremely high concentrations of particulate Fe, Al, and Mn in the impacted sites. We observed cytogenotoxic effects such as alterations in mitotic and phase indexes, and enhanced frequency of chromosomal aberrations. Our results indicate interferences in the cell cycle in impacted sites located hundreds of kilometers downstream of the disaster. The environmental impacts of the dam collapse may not only be far-reaching but also very likely long-lasting, because the mine waste may persist in the Doce River sediment for decades.


Subject(s)
Chromosome Aberrations/drug effects , Disasters , Environmental Exposure/adverse effects , Mining , Mitosis/drug effects , Onions/drug effects , Water Pollutants, Chemical/toxicity , Brazil , Environmental Monitoring , Rivers/chemistry , Structure Collapse , Trace Elements/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...