Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 10(8): 1785-95, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20626385

ABSTRACT

The Jak inhibitor CP-690,550 inhibits alloreactivity and is currently being investigated for prevention of allograft rejection after transplantation. In this study, we examined the effect of CP-690,550 on IL-2-mediated Jak/STAT5 phosphorylation by CD4(+)CD25(bright)FoxP3(+)CD127(-/low) T cells (Treg) and CD4(+)CD25(neg) effector T cells (Teff) in kidney transplant (KTx) patients. Phosphospecific flow cytometry was used to study the effect of CP-690,550 on IL-2-induced intracellular STAT5-phosphorylation. IL-2-induced phosphorylation of STAT5 (P-STAT5) in both Treg and Teff, which was significantly higher for CD4(+)CD25(bright) Treg (increased by 71%, mean) than for CD4(+)CD25(neg) Teff (increased by 42%). In the presence of 100 ng/mL CP-690,550, a clinically relevant exposure, IL-2-induced P-STAT5 was partially inhibited in CD4(+)CD25(bright)Treg (% inhibition; 51%), while almost completely blocked in Teff (%inhibition; 84%, p = 0.03). The IC(50) was 2-3 times higher for Treg (104 ng/mL) than for Teff (40 ng/mL, p = 0.02). In the presence of CP-690,550, Treg exhibited additional suppressive activities on the alloactivated proliferation of Teff (56%, mean). In addition, CD4(+)CD25(bright) Treg from KTx-patients receiving CP-690,550 vigorously suppressed the proliferation of Teff (87%, mean). Our findings show that CP-690,550 effectively inhibits Teff function but preserves the suppressive activity of CD4(+)CD25(bright) regulatory T cells.


Subject(s)
Pyrimidines/pharmacology , Pyrroles/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/immunology , Kidney Transplantation/immunology , Male , Middle Aged , Piperidines , STAT5 Transcription Factor/antagonists & inhibitors , STAT5 Transcription Factor/metabolism , T-Lymphocytes/immunology
2.
Endocrinology ; 142(3): 1156-66, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11181531

ABSTRACT

Estrogens are important mediators of bone homeostasis, and postmenopausal estrogen replacement therapy is extensively used to prevent osteoporosis. The biological effects of estrogen are mediated by receptors belonging to the superfamily of steroid/thyroid nuclear receptors, estrogen receptor (ER)alpha and ER beta. ER alpha, not only trans-activates target genes in a hormone-specific fashion, but it can also neutralize other transcriptional activators, such as nuclear factor (NF)-kappa B, causing repression of their target genes. A major mechanism by which estrogens prevent osteoporosis seems to be repression of transcription of NF-kappa B target genes, such as the osteoclast-activating cytokines interleukin-6 and interleukin-1. To study the capacity of both ERs in repression of NF-kappa B signaling in bone cells, we first carried out transient transfections with ER alpha or ER beta of the human osteoblastic U2-OS cell line, in which endogenous NF-kappa B was stimulated by tumor necrosis factor alpha. Repression by ER alpha was already observed without 17 beta-estradiol, whereas addition of the ligand increased repression to 90%. ER beta, however, was able to repress NF-kappa B activity only in the presence of ligand. Because it is known that some antiestrogens can also display tissue-specific agonistic properties, 4-hydroxytamoxifen was tested for its capacity in repressing NF-kappa B activity and was found to be active (albeit less efficient than 17 beta-estradiol) and, interestingly, only with ER alpha. The pure antagonist ICI 164,384 was incapable of repressing through any ER subtypes. Deletion analysis and the use of receptor ER alpha/ER beta-chimeras showed that the A/B domain, containing activation function-1, is essential for this suppressive action. Next, we developed stable transfectants of the human osteoblastic U2-OS cell line containing ER alpha or ER beta in combination with an NF-kappa B luciferase reporter construct. In these cell lines, repression of NF-kappa B activity was only mediated through ER alpha and not through ER beta. These findings offer new insights into the specific role of both ER subtypes in bone homeostasis and could eventually help in developing more specific medical intervention strategies for osteoporosis.


Subject(s)
Estrogen Antagonists/pharmacology , NF-kappa B/antagonists & inhibitors , Osteoblasts/metabolism , Receptors, Estrogen/physiology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , DNA/metabolism , Estrogen Receptor alpha , Estrogen Receptor beta , Gene Expression , Genes, Reporter/physiology , Humans , I-kappa B Proteins/physiology , NF-kappa B/metabolism , Osteoblasts/drug effects , Protein Structure, Tertiary/physiology , RNA, Messenger/metabolism , Receptors, Estrogen/chemistry , Receptors, Estrogen/genetics , Stereoisomerism , Transfection , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...