Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 32(18): 4128-4140, 2022 09 04.
Article in English | MEDLINE | ID: mdl-35029670

ABSTRACT

Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.


Subject(s)
Callithrix , Magnetic Resonance Imaging , Animals , Brain/anatomy & histology , Prefrontal Cortex , Temporal Lobe
2.
Cereb Cortex ; 32(7): 1319-1336, 2022 03 30.
Article in English | MEDLINE | ID: mdl-34494095

ABSTRACT

Structural and functional abnormalities of the orbitofrontal cortex (OFC) have been implicated in affective disorders that manifest anxiety-related symptoms. However, research into the functions of primate OFC has predominantly focused on reward-oriented rather than threat-oriented responses. To redress this imbalance, the present study performed a comprehensive analysis of the independent role of 2 distinct subregions of the central OFC (anterior area 11; aOFC and posterior area 13; pOFC) in the processing of distal and proximal threat. Temporary inactivation of both aOFC and pOFC heightened responses to distal threat in the form of an unknown human, but not to proximal threat assessed in a discriminative Pavlovian conditioning task. Inactivation of the aOFC, however, did unexpectedly blunt conditioned threat responses, although the effect was not valence-specific, as conditioned appetitive responses were similarly blunted and appeared restricted to a discriminative version of the task (when both CS- and CS+ are present within a session). Inactivation of the pOFC did not affect conditioned responses to either proximal threat or reward and basal cardiovascular activity was unaffected by manipulations of activity in either subregion. The results highlight the contribution of aOFC and pOFC to regulation of responses to more distal uncertain but not proximal, certain threat and reveal their opposing contribution to that of the immediately adjacent medial OFC, area 14.


Subject(s)
Callithrix , Reward , Animals , Conditioning, Classical/physiology , Frontal Lobe/physiology , Prefrontal Cortex/physiology
3.
Cereb Cortex ; 31(10): 4765-4780, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34076234

ABSTRACT

The midcingulate cortex (MCC) is associated with cognition and emotion regulation. Structural and correlational functional evidence suggests that rather than being homogenous, the MCC may have dissociable functions that can be mapped onto distinct subregions. In this study, we use the marmoset monkey to causally investigate the contributions of two proposed subregions of the MCC: the anterior and posterior midcingulate cortices (aMCC and pMCC) to behavioral and cardiovascular correlates of threat processing relevant to anxiety disorders. Transient inactivation of the aMCC decreased anxiety-like responses to a postencounter distal threat, namely an unfamiliar human intruder, while inactivation of the pMCC showed a mild but opposing effect. Furthermore, although inactivation of neither MCC subregions had any effect on basal cardiovascular activity, aMCC inactivation blunted the expression of both cardiovascular and behavioral conditioned responses to a predictable proximal threat (a rubber snake) during the extinction in a Pavlovian conditioning task, with pMCC inactivation having again an opposing effect, but primarily on the behavioral response. These findings suggest that the MCC is indeed functionally heterogeneous with regards to its role in threat processing, with aMCC providing a marked facilitative contribution to the expression of the emotional response to both proximal and distal threat.


Subject(s)
Fear/physiology , Gyrus Cinguli/physiology , Animals , Anxiety/psychology , Behavior, Animal , Brain Mapping , Callithrix , Cardiovascular Physiological Phenomena , Conditioning, Classical , Emotions , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male
4.
Front Behav Neurosci ; 14: 34, 2020.
Article in English | MEDLINE | ID: mdl-32218725

ABSTRACT

Human studies with self-reported measures have suggested a link between an avoidant coping style and high anxiety. Here, using the common marmoset as a model, we characterize the latent factors underlying behavioral responses of these monkeys towards low and high imminence threat and investigate if a predominantly avoidant behavioral response to high imminence threat is associated with greater anxiety-like behavior in a context of low imminence threat. Exploratory factor analysis (EFA) of the human intruder test of low imminence threat revealed a single factor in which a combination of active vigilance and avoidance responses underpinned anxiety-like behavior. In contrast, two negatively-associated factors were revealed in the model snake test reflecting active and avoidant coping to high imminence threat. Subsequent analysis showed that animals with a predominantly avoidant coping style on the model snake test displayed higher anxiety-like behavior on the human intruder test, findings consistent with those described in humans. Together they illustrate the richness of the behavioral repertoire displayed by marmosets in low and high imminence threatening contexts and the additional insight that factor analysis can provide by identifying the latent factors underlying these complex behavioral datasets. They also highlight the translational value of this approach when studying the neural circuits underlying complex anxiety-like states in this primate model.

5.
J Neurosci ; 39(16): 3094-3107, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30718320

ABSTRACT

High-trait anxiety is a risk factor for the development of affective disorders and has been associated with decreased cardiovascular and behavioral responsivity to acute stressors in humans that may increase the risk of developing cardiovascular disease. Although human neuroimaging studies of high-trait anxiety reveals dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp) and rodent studies reveal the importance of aHipp glutamatergic hypofunction, the causal involvement of aHipp glutamate and its interaction with these areas in the primate brain is unknown. Accordingly, we correlated marmoset trait anxiety scores to their postmortem aHipp glutamate levels and showed that low glutamate in the right aHipp is associated with high-trait anxiety in marmosets. Moreover, pharmacologically increasing aHipp glutamate reduced anxiety levels in highly anxious marmosets in two uncertainty-based tests of anxiety: exposure to a human intruder with uncertain intent and unpredictable loud noise. In the human intruder test, increasing aHipp glutamate decreased anxiety by increasing approach to the intruder. In the unpredictable threat test, animals showed blunted behavioral and cardiovascular responsivity after control infusions, which was normalized by increasing aHipp glutamate. However, this aHipp-mediated anxiolytic effect was blocked by simultaneous pharmacological inactivation of area 25, but not area 32, areas which when inactivated independently reduced and had no effect on anxiety, respectively. These findings provide causal evidence in male and female primates that aHipp glutamatergic hypofunction and its regulation by area 25 contribute to the behavioral and cardiovascular symptoms of endogenous high-trait anxiety.SIGNIFICANCE STATEMENT High-trait anxiety predisposes sufferers to the development of anxiety and depression. Although neuroimaging of these disorders and rodent modeling implicate dysregulation in hippocampal glutamate and the subgenual/perigenual cingulate cortices (areas 25/32), the causal involvement of these structures in endogenous high-trait anxiety and their interaction are unknown. Here, we demonstrate that increased trait anxiety in marmoset monkeys correlates with reduced hippocampal glutamate and that increasing hippocampal glutamate release in high-trait-anxious monkeys normalizes the aberrant behavioral and cardiovascular responsivity to potential threats. This normalization was blocked by simultaneous inactivation of area 25, but not area 32. These findings provide casual evidence in primates that hippocampal glutamatergic hypofunction regulates endogenous high-trait anxiety and the hippocampal-area 25 circuit is a potential therapeutic target.


Subject(s)
Anxiety/metabolism , Behavior, Animal/physiology , Glutamic Acid/metabolism , Heart Rate/physiology , Hippocampus/metabolism , Amino Acids/pharmacology , Animals , Behavior, Animal/drug effects , Benzylamines/pharmacology , Callithrix , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA-A Receptor Antagonists/pharmacology , Heart Rate/drug effects , Hippocampus/drug effects , Male , Phosphinic Acids/pharmacology , Xanthenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...