Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 65: 197-206, 2021 05.
Article in English | MEDLINE | ID: mdl-33242648

ABSTRACT

Reprogramming organisms for large-scale bioproduction counters their evolutionary objectives of fast growth and often leads to mutational collapse of the engineered production pathways during cultivation. Yet, the mutational susceptibility of academic and industrial Escherichia coli bioproduction host strains are poorly understood. In this study, we apply 2nd and 3rd generation deep sequencing to profile simultaneous modes of genetic heterogeneity that decimate engineered biosynthetic production in five popular E. coli hosts BL21(DE3), TOP10, MG1655, W, and W3110 producing 2,3-butanediol and mevalonic acid. Combining short-read and long-read sequencing, we detect strain and sequence-specific mutational modes including single nucleotide polymorphism, inversion, and mobile element transposition, as well as complex structural variations that disrupt the integrity of the engineered biosynthetic pathway. Our analysis suggests that organism engineers should avoid chassis strains hosting active insertion sequence (IS) subfamilies such as IS1 and IS10 present in popular E. coli TOP10. We also recommend monitoring for increased mutagenicity in the pathway transcription initiation regions and recombinogenic repeats. Together, short and long sequencing reads identified latent low-frequency mutation events such as a short detrimental inversion within a pathway gene, driven by 8-bp short inverted repeats. This demonstrates the power of combining ultra-deep DNA sequencing technologies to profile genetic heterogeneities of engineered constructs and explore the markedly different mutational landscapes of common E. coli host strains. The observed multitude of evolving variants underlines the usefulness of early mutational profiling for new synthetic pathways designed to sustain in organisms over long cultivation scales.


Subject(s)
Escherichia coli , Biosynthetic Pathways , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Mevalonic Acid , Sequence Analysis, DNA
2.
Microbiome ; 8(1): 28, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32138779

ABSTRACT

The gut microbiota has the potential to influence the efficacy of cancer therapy. Here, we investigated the contribution of the intestinal microbiome on treatment outcomes in a heterogeneous cohort that included multiple cancer types to identify microbes with a global impact on immune response. Human gut metagenomic analysis revealed that responder patients had significantly higher microbial diversity and different microbiota compositions compared to non-responders. A machine-learning model was developed and validated in an independent cohort to predict treatment outcomes based on gut microbiota composition and functional repertoires of responders and non-responders. Specific species, Bacteroides ovatus and Bacteroides xylanisolvens, were positively correlated with treatment outcomes. Oral gavage of these responder bacteria significantly increased the efficacy of erlotinib and induced the expression of CXCL9 and IFN-γ in a murine lung cancer model. These data suggest a predictable impact of specific constituents of the microbiota on tumor growth and cancer treatment outcomes with implications for both prognosis and therapy.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Metagenomics , Neoplasms/drug therapy , Neoplasms/microbiology , Adult , Aged , Animals , Disease Models, Animal , Feces/microbiology , Female , Genetic Variation , Humans , Longitudinal Studies , Lung Neoplasms/drug therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , Prognosis , Treatment Outcome
4.
Clin Microbiol Rev ; 30(4): 1015-1063, 2017 10.
Article in English | MEDLINE | ID: mdl-28855266

ABSTRACT

Outbreaks of multidrug-resistant bacteria present a frequent threat to vulnerable patient populations in hospitals around the world. Intensive care unit (ICU) patients are particularly susceptible to nosocomial infections due to indwelling devices such as intravascular catheters, drains, and intratracheal tubes for mechanical ventilation. The increased vulnerability of infected ICU patients demonstrates the importance of effective outbreak management protocols to be in place. Understanding the transmission of pathogens via genotyping methods is an important tool for outbreak management. Recently, whole-genome sequencing (WGS) of pathogens has become more accessible and affordable as a tool for genotyping. Analysis of the entire pathogen genome via WGS could provide unprecedented resolution in discriminating even highly related lineages of bacteria and revolutionize outbreak analysis in hospitals. Nevertheless, clinicians have long been hesitant to implement WGS in outbreak analyses due to the expensive and cumbersome nature of early sequencing platforms. Recent improvements in sequencing technologies and analysis tools have rapidly increased the output and analysis speed as well as reduced the overall costs of WGS. In this review, we assess the feasibility of WGS technologies and bioinformatics analysis tools for nosocomial outbreak analyses and provide a comparison to conventional outbreak analysis workflows. Moreover, we review advantages and limitations of sequencing technologies and analysis tools and present a real-world example of the implementation of WGS for antimicrobial resistance analysis. We aimed to provide health care professionals with a guide to WGS outbreak analysis that highlights its benefits for hospitals and assists in the transition from conventional to WGS-based outbreak analysis.


Subject(s)
Bacterial Infections/microbiology , Cross Infection/microbiology , Genome, Bacterial/genetics , Bacterial Infections/prevention & control , Bacterial Infections/transmission , Cross Infection/prevention & control , Cross Infection/transmission , Genotype , Humans , Sequence Analysis, DNA
5.
Sci Total Environ ; 544: 168-74, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26657362

ABSTRACT

Metal tolerance in aquatic hyphomycetes varies with the level of pollution at the fungal isolation site. While the focus of previous research has been on the effects of metal exposure on interspecies diversity, intraspecies variation of aquatic hyphomycetes remains largely unexplored. In this study we investigate the effects of Cu on ecological function (litter decomposition) and growth of five strains of Heliscus lugdunensis, isolated from contaminated and un-contaminated streams, in order to examine whether strains are expressed as ecotypes with distinct growth and functional signatures in response to metal stress. When exposed to Cu, strains of H. lugdunensis differed significantly in their litter decomposition and reproductive activity (sporulation) as well as mycelial growth, corresponding to the Cu concentrations at their isolation site. Strains isolated from sites with high Cu concentrations induced the highest litter decomposition or invested most in growth. This study broadens our understanding of Cu pollution in streams, which may lead to evolved adaptations of Cu tolerant ecotypes of H. lugdunensis differing in their ecological function, behaviour and morphology when exposed to metals.


Subject(s)
Ascomycota/physiology , Copper/toxicity , Water Pollutants, Chemical/toxicity , Adaptation, Physiological , Copper/metabolism , Ecotype , Mitosporic Fungi , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...