Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurosci Lett ; 814: 137449, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37597742

ABSTRACT

Spinal cord injury (SCI) is a devastating trauma of the central nervous system, with high levels of morbidity, disability, and mortality. To explore the underlying mechanism of SCI, we analyzed the proteome and phosphoproteome of rats at one week after SCI. We identified 465 up-regulated and 129 down-regulated differentially expressed proteins (DEPs), as well as 184 up-regulated and 40 down-regulated differentially expressed phosphoproteins (DEPPs). Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we identified the biological characteristics of these proteins from the perspectives of cell component, biological process, and molecular function. We also found a lot of enriched functional pathways such as GABAergic synapse pathway, ErbB signaling pathway, tight junction, adherens junction. The integrated analysis of proteomics and phosphoproteomics yielded 22 differently expressed co-identified proteins of DEPs and DEPPs, which revealed strongly correlative patterns. These findings may help clarify the potential mechanisms of trauma and repair in SCI and may guide the development of novel treatments.


Subject(s)
Gene Expression Profiling , Spinal Cord Injuries , Rats , Animals , Proteomics , Spinal Cord Injuries/metabolism , Proteome/metabolism , Spinal Cord/metabolism
2.
Heliyon ; 9(8): e18706, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554848

ABSTRACT

VEGF165 and its isoform VEGF165b have the same length but opposite functions in cancer. Some studies have indicated the important role of VEGF165 in osteosarcoma (OS); however, VEGF165b has not been taken into consideration. This study aims to clarify the roles of the two isoforms in OS and the mechanism controlling their formation from an alternative splicing perspective. By in vivo and in vitro experiments, we assessed the expression and function of VEGF165 and VEGF165b, screened the underlying splicing factors, and verified the regulatory function of splicing factor YBX1 on the two isoforms and its role in OS. The results showed that in OS, VEGF165 was upregulated but VEGF165b was downregulated. VEGF165 promoted the proliferation, migration and invasion of OS cells and induced angiogenesis in OS tumours; however, VEGF165b showed the opposite function. Of the four screened splicing factors, YBX1 was upregulated in OS tissues. It was positively correlated with VEGF165 but negatively correlated with VEGF165b. Further study indicated that YBX1 could upregulate VEGF165 but downregulate VEGF165b. Moreover, YBX1 promoted the proliferation, migration and invasion of OS cells and induced angiogenesis in OS tumours. OS patients with higher YBX1 had a poor prognosis within five years, but this difference disappeared in a longer follow-up. In conclusion, VEGF165b was antineoplastic and downregulated in OS, in contrast to VEGF165. YBX1 was found to be an important splicing factor that increased VEGF165 but decreased VEGF165b. Targeting YBX1 could endogenously alter the levels of VEGF165 and VEGF165b simultaneously.

3.
Cell Signal ; 86: 110074, 2021 10.
Article in English | MEDLINE | ID: mdl-34229087

ABSTRACT

Natriuretic peptide receptor 3 (NPR3), mediates natriuretic peptides degradation, was reported to act as a tumor suppressor or promoter in some types of cancer. Previous studies showed that NPR3 was significantly decreased in osteosarcoma (OS) samples. However, the function and potential regulatory mechanism of NPR3 in OS development are unknown. By analyzing the protein expression of NPR3 in OS cell lines (n = 5) and human osteoblast cell line hFOB 1.19, we found that NPR3 expression was also significantly decreased in OS cells. The loss/gain-of-function analysis indicated that NPR3 overexpression observably decreased OS cell viability, arrested cell cycle, and induced apoptosis. However, NPR3 knockdown further enhanced the malignant phenotype of OS cells. Furthermore, NPR3 downregulation activated the PI3K/AKT pathway in OS cells, and the effects of NPR3 silencing on cell proliferation were reversed by the blockade of PI3K/AKT pathway. Of note, dual-luciferase reported assay and site-directed mutagenesis assay indicated that transcription factor POU domain class 2 transcription factor 1 (POU2F1) was proved to suppress NPR3 promoter activity by mainly binding to the -900 to -800 bp region of NPR3 promoter. Moreover, NPR3 overexpression inversed the promotion effect of POU2F1 on cell proliferation. In vivo experiments confirmed that NPR3 overexpression suppressed the growth of xenograft tumors. Taken together, the present study demonstrates that NPR3 may serve as a novel tumor suppressive factor through blocking the PI3K/AKT pathway and transcriptionally regulated by POU2F1.


Subject(s)
Bone Neoplasms , Osteosarcoma , Receptors, Atrial Natriuretic Factor/metabolism , Apoptosis , Bone Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Humans , Octamer Transcription Factor-1/metabolism , Osteosarcoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL