Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1282890, 2023.
Article in English | MEDLINE | ID: mdl-38053999

ABSTRACT

Changes in lifestyle induce an increase in patients with hyperuricemia (HUA), leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is a strong inflammatory response in the process of HUA, while dysregulation of immune cells, including monocytes, macrophages, and T cells, plays a crucial role in the inflammatory response. Recent studies have indicated that urate has a direct impact on immune cell populations, changes in cytokine expression, modifications in chemotaxis and differentiation, and the provocation of immune cells by intrinsic cells to cause the aforementioned conditions. Here we conducted a detailed review of the relationship among uric acid, immune response, and inflammatory status in hyperuricemia and its complications, providing new therapeutic targets and strategies.


Subject(s)
Arthritis, Gouty , Gout , Hyperuricemia , Humans , Hyperuricemia/complications , Hyperuricemia/metabolism , Uric Acid/metabolism , Gout/drug therapy , Arthritis, Gouty/drug therapy , Inflammation/complications
2.
Medicine (Baltimore) ; 98(24): e15850, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31192915

ABSTRACT

BACKGROUND: The diabetic kidney disease (DKD) has become a seriously kidney disease that commonly caused by diabetes mellitus (DM). Oxidative stress response plays an essential role in the genesis and worsening of DKD and Coenzyme Q10 (CoQ10) has been reported the promising clinical effectiveness on DKD treatment. However, there is lack of relative evidence-based medical evidence currently. OBJECTIVE: The systematic review and meta-analysis was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, which conducted to evaluate the effectiveness of CoQ10 in combination with other western medicine for DKD therapy through the randomized controlled trials (RCTs) and experimental studies. METHODS: RCTs and experimental studies were searched based on standardized searching rules in 12 medical databases from the inception up to June 2018 and a total of 8 articles (4 RCTs and 4 experimental studies) were enrolled in the meta-analysis. RESULTS: The results revealed that CoQ10 combined with other western medicine show statistical differences in the laboratory parameters of fasting plasma glucose (FPG), Hemoglobin A1c (HbA1c), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), triglyceride (TG), and malondialdehyde (MDA) amelioration after DKD therapy compared with control group. However, LDL-C and Urea level for RCTs and Urine output and Glucose for experimental studies on DKD was not superior to control group. CONCLUSION: We need to make conclusion cautiously for the effectiveness of CoQ10 application on DKD therapy. More standard, multicenter, double-blind RCTs, and formal experimental studies of CoQ10 treatment for DKD were urgent to be conducted for more clinical evidence providing in the future. The underlying pharmacological mechanism of CoQ10 needs to be researched and revealed for its future application on DKD therapy.


Subject(s)
Diabetic Nephropathies/drug therapy , Ubiquinone/analogs & derivatives , Vitamins/therapeutic use , Blood Glucose/metabolism , Cholesterol/metabolism , Diabetic Nephropathies/metabolism , Evidence-Based Medicine , Glycated Hemoglobin/metabolism , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Treatment Outcome , Ubiquinone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...