Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Des Monomers Polym ; 27(1): 1-9, 2024.
Article in English | MEDLINE | ID: mdl-38179186

ABSTRACT

Ordinary polymers have poor adaptability in high-temperature and high-salt reservoir environments due to their properties. Organic/inorganic composite copolymer microspheres have the advantages of both of them, which are expected to break through their applicability limitations in such oil reservoirs. Therefore, its preparation and performance have always been of great concern to researchers. In this paper, AM/AMPS/Si-St ternary copolymers were synthesized by precipitation polymerization; then modified nano-silica particles were added to synthesize AM/AMPS/Si-St/g-SiO2 organic/inorganic composite quaternary copolymers. FT-IR and SEM characterized the copolymers to confirm that they were prepared successfully. Experiments were carried out to investigate the concentration and ratio of monomers, which showed that the Weissenberg effect could be avoided. The number of polymer molecules could be stabilized under AM concentration of 12 wt%, AM/AMPS/Si-St ratio of 8:1:1, nano silica of 3.3% and the modification conditions of KH570:SiO2 = 1:1. The experiments of temperature and salt resistance of two copolymers were evaluated and compared were conducted by using viscosity and particle size as parameters. The results showed that quaternary copolymers could increase the viscosity retention rate by about 10% compared with ternary copolymers under high content of Na+ and Mg2+. When the two copolymers were placed at 150°C, the appearance and morphology of the terpolymer changed obviously. Through the SEM image of the quaternary copolymers, it could be seen that although the spherical shape of the microsphere had been gradually lost, no degradation occurred, and the stable time of the modified microspheres had been effectively extended.

2.
J Am Chem Soc ; 145(22): 12044-12050, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37226051

ABSTRACT

We employ time-slice and velocity map ion imaging methods to explore the quantum-state resolved dynamics in thermal N2O decomposition on Pd(110). We observe two reaction channels: a thermal channel that is ascribed to N2 products initially trapped at surface defects and a hyperthermal channel involving a direct release of N2 to the gas phase from N2O adsorbed on bridge sites oriented along the [001] azimuth. The hyperthermal N2 is highly rotationally excited up to J = 52 (v″ = 0) with a large average translational energy of 0.62 eV. Between 35 and 79% of the estimated barrier energy (1.5 eV) released upon dissociation of the transition state (TS) is taken up by the desorbed hyperthermal N2. The observed attributes of the hyperthermal channel are interpreted by post-transition-state classical trajectories on a density functional theory-based high-dimensional potential energy surface. The energy disposal pattern is rationalized by the sudden vector projection model, which attributes to unique features of the TS. Applying detailed balance, we predict that in the reverse Eley-Rideal reaction, both N2 translational and rotational excitation promote N2O formation.

3.
Nat Chem ; 15(7): 1006-1011, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217785

ABSTRACT

The formation of two-electron chemical bonds requires the alignment of spins. Hence, it is well established for gas-phase reactions that changing a molecule's electronic spin state can dramatically alter its reactivity. For reactions occurring at surfaces, which are of great interest during, among other processes, heterogeneous catalysis, there is an absence of definitive state-to-state experiments capable of observing spin conservation and therefore the role of electronic spin in surface chemistry remains controversial. Here we use an incoming/outgoing correlation ion imaging technique to perform scattering experiments for O(3P) and O(1D) atoms colliding with a graphite surface, in which the initial spin-state distribution is controlled and the final spin states determined. We demonstrate that O(1D) is more reactive with graphite than O(3P). We also identify electronically nonadiabatic pathways whereby incident O(1D) is quenched to O(3P), which departs from the surface. With the help of molecular dynamics simulations carried out on high-dimensional machine-learning-assisted first-principles potential energy surfaces, we obtain a mechanistic understanding for this system: spin-forbidden transitions do occur, but with low probabilities.

4.
J Am Chem Soc ; 144(27): 12158-12166, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35762507

ABSTRACT

The reaction mechanism of the CH3OH synthesis by the hydrogenation of CO2 on Cu catalysts is unclear because of the challenge in experimentally detecting reaction intermediates formed by the hydrogenation of adsorbed formate (HCOOa). Thus, the objective of this study is to clarify the reaction mechanism of the CH3OH synthesis by establishing the kinetic natures of intermediates formed by the hydrogenation of adsorbed HCOOa on Cu(111). We exposed HCOOa on Cu(111) to atomic hydrogen at low temperatures of 200-250 K and observed the species using infrared reflection absorption (IRA) spectroscopy and temperature-programmed desorption (TPD) studies. In the IRA spectra, a new peak was observed upon the exposure of HCOOa on Cu(111) to atomic hydrogen at 200 K and was assigned to the adsorbed dioxymethylene (H2COOa) species. The intensity of the new peak gradually decreased with heating from 200 to 290 K, whereas the IR peaks representing HCOOa species increased correspondingly. In addition, small amounts of formaldehyde (HCHO), which were formed by the exposure of HCOOa species to atomic hydrogen, were detected in the TPD studies. Therefore, H2COOa is formed via hydrogenation by atomic hydrogen, which thermally decomposes at ∼250 K on Cu(111). We propose a potential diagram of the CH3OH synthesis via H2COOa from CO2 on Cu surfaces, with the aid of density functional theory calculations and literature data, in which the hydrogenation of bidentate HCOOa to H2COOa is potentially the rate-determining step and accounts for the apparent activation energy of the methanol synthesis from CO2 on Cu surfaces.

5.
Nat Chem ; 11(8): 722-729, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31235896

ABSTRACT

Understanding gas-surface reaction dynamics, such as the rupture and formation of bonds in vibrationally and translationally excited ('hot') molecules, is important to provide mechanistic insight into heterogeneous catalytic processes. Although it has been established that such excitation can affect the reactions occurring via dissociative mechanisms, for associative mechanisms-in which the gas-phase reactant collides directly with a surface-adsorbed species-only translational excitation has been observed to affect reactivity. Here we report a bond-formation reaction that is driven by the vibrational energy of reactant molecules and occurs via an (associative) Eley-Rideal-type mechanism, in which the reaction takes place in a single collision. Hot CO2 in a molecular beam is found to react with pre-adsorbed hydrogen atoms directly on cold Cu(111) and Cu(100) surfaces to form formate adspecies. The vibrational energy of CO2 is more effective at promoting the reaction than translational energy, the reaction rate is independent of the surface temperature and the experimental results are consistent with density functional theory calculations.

6.
Angew Chem Int Ed Engl ; 56(13): 3496-3500, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28211137

ABSTRACT

Energy transfer dynamics of formate (HCOOa ) decomposition on a Cu(110) surface has been studied by measuring the angle-resolved intensity and translational energy distributions of CO2 emitted from the surface in a steady-state reaction of HCOOH and O2 . The angular distribution of CO2 shows a sharp collimation with the direction perpendicular to the surface, as represented by cosn θ (n=6). The mean translational energy of CO2 is measured to be as low as 100 meV and is independent of the surface temperature (Ts ). These results clearly indicate that the decomposition of formate is a thermal non-equilibrium process in which a large amount of energy released by the decomposition reaction of formate is transformed into the internal energies of CO2 molecules. The thermal non-equilibrium features observed in the dynamics of formate decomposition support the proposed Eley-Rideal (ER)-type mechanism for formate synthesis on copper catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...