Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Nat Plants ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755277

ABSTRACT

Growing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.

2.
Nat Commun ; 15(1): 4440, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789422

ABSTRACT

Inorganic semiconductors typically have limited p-type behavior due to the scarcity of holes and the localized valence band maximum, hindering the progress of complementary devices and circuits. In this work, we propose an inorganic blending strategy to activate the hole-transporting character in an inorganic semiconductor compound, namely tellurium-selenium-oxygen (TeSeO). By rationally combining intrinsic p-type semimetal, semiconductor, and wide-bandgap semiconductor into a single compound, the TeSeO system displays tunable bandgaps ranging from 0.7 to 2.2 eV. Wafer-scale ultrathin TeSeO films, which can be deposited at room temperature, display high hole field-effect mobility of 48.5 cm2/(Vs) and robust hole transport properties, facilitated by Te-Te (Se) portions and O-Te-O portions, respectively. The nanosphere lithography process is employed to create nanopatterned honeycomb TeSeO broadband photodetectors, demonstrating a high responsibility of 603 A/W, an ultrafast response of 5 µs, and superior mechanical flexibility. The p-type TeSeO system is highly adaptable, scalable, and reliable, which can address emerging technological needs that current semiconductor solutions may not fulfill.

3.
Med Image Anal ; 96: 103200, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38801797

ABSTRACT

The success of deep learning methodologies hinges upon the availability of meticulously labeled extensive datasets. However, when dealing with medical images, the annotation process for such abundant training data often necessitates the involvement of experienced radiologists, thereby consuming their limited time resources. In order to alleviate this burden, few-shot learning approaches have been developed, which manage to achieve competitive performance levels with only several labeled images. Nevertheless, a crucial yet previously overlooked problem in few-shot learning is about the selection of template images for annotation before learning, which affects the final performance. In this study, we propose a novel TEmplate Choosing Policy (TECP) that aims to identify and select "the most worthy" images for annotation, particularly within the context of multiple few-shot medical tasks, including landmark detection, anatomy detection, and anatomy segmentation. TECP is composed of four integral components: (1) Self-supervised training, which entails training a pre-existing deep model to extract salient features from radiological images; (2) Alternative proposals for localizing informative regions within the images; and (3) Representative Score Estimation, which involves the evaluation and identification of the most representative samples or templates. (4) Ranking, which rank all candidates and select one with highest representative score. The efficacy of the TECP approach is demonstrated through a series of comprehensive experiments conducted on multiple public datasets. Across all three medical tasks, the utilization of TECP yields noticeable improvements in model performance.

4.
Org Lett ; 26(22): 4678-4683, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38787784

ABSTRACT

The radical 1,4-functionalizations of 1,3-enynes have emerged as a powerful strategy for the synthesis of multisubstituted allenes. However, the phosphorus-centered radical-initiated transformations remain largely elusive. Herein, visible-light photoredox catalytic regioselective radical hydrophosphinylation of 1,3-enynes with diaryl phosphine oxides as phosphinoyl radical precursors has been realized. This protocol features mild conditions, a wide substrate scope, and good functional group tolerance, producing a diverse range of phosphinoyl-substituted allenes in moderate to good yields with high atom economy. Detailed mechanistic experiments revealed a radical-polar crossover process in the reaction.

5.
World J Diabetes ; 15(4): 591-597, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38680699

ABSTRACT

Diabetic kidney disease (DKD) is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease (ESKD). Wide glycemic var-iations, such as hypoglycemia and hyperglycemia, are broadly found in diabetic patients with DKD and especially ESKD, as a result of impaired renal metabolism. It is essential to monitor glycemia for effective management of DKD. Hemoglobin A1c (HbA1c) has long been considered as the gold standard for monitoring glycemia for > 3 months. However, assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction. Continuous glucose monitoring (CGM) has provided new insights on glycemic assessment and management. CGM directly measures glucose level in interstitial fluid, reports real-time or retrospective glucose concentration, and provides multiple glycemic metrics. It avoids the pitfalls of HbA1c in some contexts, and may serve as a precise alternative to estimation of mean glucose and glycemic variability. Emerging studies have demonstrated the merits of CGM for precise monitoring, which allows fine-tuning of glycemic management in diabetic patients. Therefore, CGM technology has the potential for better glycemic monitoring in DKD patients. More research is needed to explore its application and management in different stages of DKD, including hemodialysis, peritoneal dialysis and kidney transplantation.

6.
Sci Total Environ ; 928: 172226, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38593880

ABSTRACT

Corn is the third most cultivated food crop in the world, and climate change has important effects on corn production and food security. China is the top user of chemical fertilizer in the world, and analyzing how to effectively manage fertilizer application in such a developing country with resource constraints is crucial. We present empirical evidence from China to demonstrate the nonlinear impact of temperature on fertilizer usage in corn production based on a panel dataset that shows 2297 corn-growing counties during 1998-2016. Our findings indicate that fertilizer usage barely changes with increasing temperatures that are below 28 °C; however, exposure to temperatures above 28 °C leads to a sharp increase in fertilizer use. The increase in temperatures in the sample period implies that fertilizer usage per hectare for corn increased by 1.5 kg. Summer corn fertilizer application in the Yellow-Huai River Valley is more sensitive to warming than in the North region. Moreover, nitrogen, phosphorus, and potassium fertilizers have different temperature thresholds of 32 °C, 20 °C, and 20 °C, respectively, that cause significant changes.


Subject(s)
Agriculture , Climate Change , Fertilizers , Zea mays , Fertilizers/analysis , Zea mays/growth & development , China , Agriculture/methods , Crops, Agricultural/growth & development , Temperature , Nitrogen/analysis
7.
Org Biomol Chem ; 22(11): 2156-2174, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38385507

ABSTRACT

Cascade reactions represent an efficient and economical synthetic approach, enabling the rapid synthesis of a wide array of structurally complex organic compounds. These compounds, previously inaccessible, can now be synthesized in a remarkably limited number of steps. Concurrently, the photochemical reactions of organic molecules have gained prominence as a potent strategy for accessing a diverse range of radical species and intermediates. This is achieved in a controlled manner under mild conditions. Owing to the relentless endeavors of chemists, significant strides have been made in the realm of photochemical cascade reactions. These advancements have facilitated the synthesis of novel molecular structures with high complexity, structures that are typically challenging to generate under thermal conditions. In this review, we comprehensively summarize and underscore the recent pivotal advancements in visible-light-induced cascade reactions. Our focus is on the elucidation of multiple photochemical catalytic cycles, emphasizing the catalytic activation modes and the types of reactions involved.

8.
J Dent Sci ; 19(1): 58-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303873

ABSTRACT

Background/purpose: Excessive host immune response is thought to be an important cause of periodontal tissue damage during periodontitis. The potent chemotaxis produced by locally released chemokines is the key signal to trigger this response. Here, we aimed to investigate the expression of CXC chemokine receptor 1 (CXCR1), and chemokines interleukin-8 (IL-8) and pro-platelet basic protein (PPBP) in human inflammatory gingival tissues compared with healthy tissues. Materials and methods: A total of 54 human gingival tissues, 27 healthy and 27 inflammatory samples, were collected. Fifteen specimens of each group were employed for quantitative reverse transcription polymerase chain reaction to determine the mRNA levels of CXCR1, IL-8, and PPBP. Six samples of each group were used for Western blotting to investigate the protein expression of CXCR1 and for enzyme-linked immunosorbent assay to evaluate the protein levels of IL-8 and PPBP, respectively. Results: The mRNA levels of chemokine receptor CXCR1, chemokine IL-8, and PPBP in inflammatory gingival tissues were significantly higher than those in healthy controls (P < 0.05). The protein levels of CXCR1, IL-8, and PPBP in inflammatory gingival tissues were also significantly higher than those in healthy gingival tissues (P < 0.05). Conclusion: When compared to healthy gingival tissues, the expression of CXCR1, IL-8, and PPBP in inflammatory gingival tissues is higher.

9.
Nat Commun ; 15(1): 728, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272917

ABSTRACT

High synthesis temperatures and specific growth substrates are typically required to obtain crystalline or oriented inorganic functional thin films, posing a significant challenge for their utilization in large-scale, low-cost (opto-)electronic applications on conventional flexible substrates. Here, we explore a pulse irradiation synthesis (PIS) to prepare thermoelectric metal chalcogenide (e.g., Bi2Se3, SnSe2, and Bi2Te3) films on multiple polymeric substrates. The self-propagating combustion process enables PIS to achieve a synthesis temperature as low as 150 °C, with an ultrafast reaction completed within one second. Beyond the photothermoelectric (PTE) property, the thermal coupling between polymeric substrates and bismuth selenide films is also examined to enhance the PTE performance, resulting in a responsivity of 71.9 V/W and a response time of less than 50 ms at 1550 nm, surpassing most of its counterparts. This PIS platform offers a promising route for realizing flexible PTE or thermoelectric devices in an energy-, time-, and cost-efficient manner.

10.
World J Oncol ; 15(1): 28-37, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274726

ABSTRACT

The dynamic changes between glycolysis and oxidative phosphorylation (OXPHOS) for adenosine triphosphate (ATP) output, along with glucose, glutamine, and fatty acid utilization, etc., lead to the maintenance and selection of growth advantageous to tumor cell subgroups in an environment of iron starvation and hypoxia. Iron plays an important role in the three major biochemical reactions in nature: photosynthesis, nitrogen fixation, and oxidative respiration, which all require the participation of iron-sulfur proteins, such as ferredoxin, cytochrome b, and the complex I, II, III in the electron transport chain, respectively. Abnormal iron-sulfur cluster synthesis process or hypoxia will directly affect the function of mitochondrial electron transfer and mitochondrial OXPHOS. More research results have indicated that iron metabolism, oxygen availability and hypoxia-inducible factor mutually regulate the shift between glycolysis and OXPHOS. In this article, we make a perspective review to provide novel opinions of the regulation of glycolysis and OXPHOS in tumor cells.

11.
BMC Cancer ; 24(1): 57, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200410

ABSTRACT

BACKGROUND: Anus preservation has been a challenge in the treatment of patients with low rectal adenocarcinoma (within 5 cm from the anal verge) because it is difficult to spare the anus with its functioning sphincter complex under the safe margin of tumour resection. Patients with dMMR/MSI-H can achieve a favourable complete response (CR) rate by using a single immune checkpoint inhibitor. For patients with pMMR/MSS/MSI-L, intensified neoadjuvant three-drug chemotherapy may be the preferred option for anal preservation. In addition, the watch and wait (W&W) strategy has been proven safe and feasible for patients with rectal cancer who achieve a clinical complete response (cCR). Therefore, we initiated this clinical trial to explore the optimal neoadjuvant treatment pattern for patients with low locally advanced rectal cancer (LARC) with different MMR/MSI statuses, aiming to achieve a higher cCR rate with the W&W strategy and ultimately provide more patients with a chance of anus preservation. METHODS: This is a randomised, controlled, open-label, multicentre phase III trial. Patients with clinical stage T2-4 and/or N + tumours located within 5 cm from the anal verge are considered eligible. Based on the results of pathological biopsy, the patients are divided into two groups: dMMR/MSI-H and pMMR/MSS. Patients in the dMMR/MSI-H group will be randomly allocated in a 1:1 ratio to either arm A (monoimmunotherapy) or arm B (short-course radiotherapy followed by monoimmunotherapy). Patients in the pMMR/MSS group will be initially treated with long-term pelvic radiation with concurrent capecitabine combined with irinotecan. Two weeks after the completion of chemoradiotherapy (CRT), the patients will be randomly allocated in a 1:1 ratio to arm C (XELIRI six cycle regime) or arm D (FOLFIRINOX nine cycle regime). The irinotecan dose will be adjusted according to the UGT1A1-genotype. After treatment, a comprehensive assessment will be performed to determine whether a cCR has been achieved. If achieved, the W&W strategy will be adopted; otherwise, total mesorectal excision (TME) will be performed. The primary endpoint is cCR with the maintenance of 12 months at least, determined using digital rectal examination, endoscopy, and rectal MRI or PET/CT as a supplementary method. DISCUSSION: APRAM will explore the best anus preservation model for low LARC, combining the strategies of consolidation chemotherapy, immunotherapy, and short-course radiotherapy, and aims to preserve the anus of more patients using W&W. Our study provides an accurate individual treatment mode based on the MMR/MSI status for patients with low LARC, and more patients will receive the opportunity for anus preservation under our therapeutic strategy, which would transform into long-term benefits. TRIAL REGISTRATION: Clinicaltrials.gov NCT05669092 (Registered 28th Nov 2022).


Subject(s)
Adenocarcinoma , Brain Neoplasms , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Pancreatic Neoplasms , Rectal Neoplasms , Humans , Anal Canal , Antineoplastic Combined Chemotherapy Protocols , Irinotecan , Positron Emission Tomography Computed Tomography , Rectal Neoplasms/drug therapy , Rectal Neoplasms/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
12.
Ecology ; 105(1): e4193, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882140

ABSTRACT

Climate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above- and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above- versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.


Subject(s)
Ecosystem , Grassland , Droughts , Climate , Climate Change
13.
Am J Nephrol ; 55(1): 1-17, 2024.
Article in English | MEDLINE | ID: mdl-37793348

ABSTRACT

BACKGROUND: Mineralocorticoid receptor blockade could be a potential approach for the inhibition of chronic kidney disease (CKD) progression. The benefits and harms of different mineralocorticoid receptor antagonists (MRAs) in CKD are inconsistent. OBJECTIVES: The aim of the study was to summarize the benefits and harms of MRAs for CKD patients. METHODS: We searched MEDLINE, EMBASE, and the Cochrane databases for trials assessing the effects of MRAs on non-dialysis-dependent CKD populations. Treatment and adverse effects were summarized using meta-analysis. RESULTS: Fifty-three trials with 6 different MRAs involving 22,792 participants were included. Compared with the control group, MRAs reduced urinary albumin-to-creatinine ratio (weighted mean difference [WMD], -90.90 mg/g, 95% CI, -140.17 to -41.64 mg/g), 24-h urinary protein excretion (WMD, -0.20 g, 95% CI, -0.28 to -0.12 g), estimated glomerular filtration rate (eGFR) (WMD, -1.99 mL/min/1.73 m2, 95% CI, -3.28 to -0.70 mL/min/1.73 m2), chronic renal failure events (RR, 0.86, 95% CI, 0.79-0.93), and cardiovascular events (RR, 0.84, 95% CI, 0.77-0.92). MRAs increased the incidence of hyperkalemia (RR, 2.04, 95% CI, 1.73-2.40) and hypotension (RR, 1.80, 95% CI, 1.41-2.31). MRAs reduced the incidence of peripheral edema (RR, 0.65, 95% CI, 0.56-0.75) but not the risk of acute kidney injury (RR, 0.94, 95% CI, 0.79-1.13). Nonsteroidal MRAs (RR, 0.66, 95% CI, 0.57-0.75) but not steroidal MRAs (RR, 0.20, 95% CI, 0.02-1.68) significantly reduced the risk of peripheral edema. Steroidal MRAs (RR, 5.68, 95% CI, 1.26-25.67) but not nonsteroidal MRAs (RR, 0.52, 95% CI, 0.22-1.22) increased the risk of breast disorders. CONCLUSIONS: In the CKD patients, MRAs, particularly in combination with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, reduced albuminuria/proteinuria, eGFR, and the incidence of chronic renal failure, cardiovascular and peripheral edema events, whereas increasing the incidence of hyperkalemia and hypotension, without the augment of acute kidney injury events. Nonsteroidal MRAs were superior in the reduction of more albuminuria with fewer peripheral edema events and without the augment of breast disorder events.


Subject(s)
Acute Kidney Injury , Hyperkalemia , Hypotension , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Mineralocorticoid Receptor Antagonists/adverse effects , Hyperkalemia/chemically induced , Hyperkalemia/epidemiology , Albuminuria/chemically induced , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/chemically induced , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Edema
14.
ACS Nano ; 18(1): 1204-1213, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38127724

ABSTRACT

Enzyme-mimicking confined catalysis has attracted great interest in heterogeneous catalytic systems that can regulate the geometric or electronic structure of the active site and improve its performance. Herein, a liquid-assisted chemical vapor deposition (LCVD) strategy is proposed to simultaneously confine the single-atom Ru sites onto sidewalls and Janus Ni/NiO nanoparticles (NPs) at the apical nanocavities to thoroughly energize the N-doped carbon nanotube arrays (denoted as Ni/NiO@Ru-NC). The bifunctional Ni/NiO@Ru-NC electrocatalyst exhibits overpotentials of 88 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 100 mA cm-2 in alkaline solution, respectively, all ranking the top tier among the carbon-supported metal-based electrocatalysts. Moreover, once integrated into an anion-exchange membrane water electrolysis (AEMWE) system, Ni/NiO@Ru-NC can act as an efficient and robust bifunctional electrocatalyst to operate stably for 50 h under 500 mA cm-2. Theoretical calculations and experimental exploration demonstrate that the confinement of Ru single atoms and Janus Ni/NiO NPs can regulate the electron distribution with strong orbital couplings to activate the NC nanotube from sidewall to top, thus boosting overall water splitting.

15.
MAbs ; 15(1): 2292305, 2023.
Article in English | MEDLINE | ID: mdl-38095560

ABSTRACT

Pharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package. However, a lean chemistry, manufacturing, and controls (CMC) package raises safety and comparability risks and may leave extra work in the late-stage development and commercialization phase. In addition, whether these accelerated COVID-19 drug development strategies can be applied to non-COVID projects and established as a standard practice in biologics development is uncertain. Here, we present a case study of a novel anti-tumor drug in which application of "fast-to-FIH" approaches in combination with BeiGene's de-risk strategy achieved successful delivery of a complete CMC package within 10 months. A comprehensive comparability study demonstrated that the DS generated from a stable pool and a single-cell-derived master cell bank were highly comparable with regards to process performance, product quality, and potency. This accomplishment can be a blueprint for non-COVID drug programs that approach the pace of drug development during the pandemic, with no adverse impact on the safety, quality, and late-stage development of biologics.


Subject(s)
Antineoplastic Agents , Biological Products , COVID-19 , Humans , Antibodies, Monoclonal , Pharmaceutical Preparations , Antineoplastic Agents/therapeutic use
16.
ACS Omega ; 8(49): 47123-47133, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107925

ABSTRACT

Multidrug-resistant bacterial infections, especially those caused by multidrug-resistant Escherichia coli (E. coli) bacteria, are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Therefore, it is urgently needed to develop a kind of novel, long-term antibacterial agent effectively overcome resistant bacteria. Herein, we present a novel designed antibacterial agent-6-Aza-2-thiothymine-capped gold nanoclusters (ATT-AuNCs), which show excellent antibacterial activity against multidrug-resistant E. coli bacteria. The prepared AuNCs could permeabilize into the bacterial cell membrane via binding with a bivalent cation (e.g., Ca2+), followed by the generation of reactive oxygen species (e.g., •OH and •O2-), ultimately resulting in protein leakage from compromised cell membranes, inducing DNA damage and upregulating pro-oxidative genes intracellular. The AuNCs also speed up the wound healing process without noticeable hemolytic activity or cytotoxicity to erythrocytes and mammalian tissue. Altogether, the results indicate the great promise of ATT-AuNCs for treating multidrug-resistant E. coli bacterial infection.

17.
Front Pharmacol ; 14: 1292745, 2023.
Article in English | MEDLINE | ID: mdl-38034989

ABSTRACT

Background: Aspirin, with its pleiotropic effects such as anti-inflammatory and anti-platelet aggregation, has been widely used for anti-inflammatory, analgesic, and cardiovascular diseases. However, the association between the use of aspirin before the intensive care unit (ICU) and clinical outcomes in critically ill patients with acute kidney injury (AKI) is unknown. Methods: Patients with AKI in this retrospective observational study were selected from the Marketplace for Medical Information in Intensive Care IV (MIMIC-IV). The association between aspirin intervention and 30-day mortality was assessed using Cox proportional hazards model. Logistic regression models were used to assess the association of aspirin intervention with the risks of intracranial hemorrhage, gastrointestinal bleeding and blood transfusion. The propensity score matching (PSM) method was adopted to balance the baseline variables. Sensitivity analysis was performed to validate the results by multiple interpolations for the missing data. Results: The study included 4237 pre-ICU aspirin users and 9745 non-users. In multivariate models, we found a decreased risk of mortality in those who received aspirin before ICU compared to those who did not (30-day:hazard ratio [HR], 0.70; 95% CI, 0.62-0.79; p < 0.001; 90-day:HR, 0.70; 95% CI, 0.63-0.77, p < 0.001; 180-day:HR, 0.72; 95%CI,0.65-0.79, p < 0.001). This benefit was consistent in the post-PSM analyses, sensitivity analyses, and subgroup analyses. Moreover, aspirin intervention was associated with a reduced risk of intracranial hemorrhage and gastrointestinal bleeding (HR, 0.16; 95% CI, 0.10-0.25; p < 0.001; HR, 0.59; 95% CI, 0.38-0.88, p = 0.012) after being adjusted by relating covariates, whereas with a increased risk of blood transfusion (HR, 1.28; 95% CI, 1.16-1.46; p < 0.001). Conclusion: Patients with AKI treated with aspirin before ICU admission might have reduced 30-day, 90-day and 180-day mortality without increasing the risk of intracranial hemorrhage (ICH) or gastrointestinal bleeding, but may increase the risk of transfusion.

18.
World J Oncol ; 14(6): 464-475, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38022411

ABSTRACT

Background: Proteasome inhibitors, such as bortezomib, have demonstrated efficacy in the therapeutic management of multiple myeloma (MM). However, it is important to note that these inhibitors also elicit endoplasmic reticulum stress, which subsequently triggers the unfolded protein response (UPR) and autophagy, which have been shown to facilitate the survival of tumor cells. The disruption of the circadian clock is considered a characteristic feature of cancer. However, how disrupted circadian clock intertwines with tumor metabolism and drug resistance is not clearly clarified. This work explores the antitumor effectiveness of bortezomib and the circadian clock agonist SR9009, elucidating their impact on glucose-regulated protein 78 (GRP78), the autophagy process, and lipogenesis. Methods: The antitumor effects of bortezomib and SR9009 were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft MM model. The assessment of cell viability was conducted using the cell counting kit-8 (CCK8) method, whereas the measurement of cell proliferation was performed with the inclusion of EdU (5-ethynyl-2'-deoxyuridine). Apoptosis was assessed by flow cytometry. The cells were transduced using adenovirus-tf-LC3, which was labeled with dual fluorescence. Subsequently, confocal imaging was employed to observe and examine the autophagosomes. REV-ERBα knockdown leads to upregulation of ATG5 and BENC1 at the protein level with immunoblot. Changes in the expression levels of GRP78, LC3, stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FASN) were assessed through the utilization of quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Results: Our results showed that both bortezomib and circadian clock REV-ERBs agonist SR9009 decreased MM viability, proliferation rate and induced an apoptotic response in a dose-dependent manner in vitro. However, the two differ greatly in their mechanisms of action. Bortezomib upregulated GRP78 and autophagy LC3, while circadian clock agonist SR9009 inhibited GRP78 and autophagy LC3. Combined SR9009 with bortezomib induced synergistic cytotoxicity against MM cells. REV-ERBα knockdown lead to upregulation of ATG5, BENC1 and significant upregulation of FASN, and SCD1. Mechanically, SR9009 inhibited the core autophagy gene ATG5 and BECN1, and two essential enzymes for de novo lipogenesis FASN and SCD1. SR9009 had synergistic effect with bortezomib and slowed down murine xenograft models of human MM tumor growth in vivo. Conclusions: Taken together, these results demonstrated that the circadian clock component REV-ERBs agonist SR9009 could inhibit GRP78-induced autophagy and de novo lipogenesis processes and had a synergistic effect with proteasome inhibitors in both in vitro and in vivo models of MM. Our findings shed light on how a disrupted circadian clock interacts with metabolic mechanisms to shape proteasome inhibitor drug resistance and suggest that SR9009 may be able to overcome the inherent drug resistance of proteasome inhibitors.

19.
Front Nutr ; 10: 1248779, 2023.
Article in English | MEDLINE | ID: mdl-37794967

ABSTRACT

Introduction: Hospital meals potentially influence patients' nutritional, physical, and emotional well-being during their admission. Patients on pureed diets report poorer meal satisfaction, due to taste, appearance, and recognisability, potentially impacting on their nutritional status. This study compared whether a moulded pureed diet made from modified maize starch led to improved taste, appearance, recognisability, and overall liking, compared to an unmoulded pureed diet made from potato starch in an acute hospital. Methods: Patients on texture-modified diets were recruited and presented with two pureed diets - unmoulded and moulded. Participants were asked to identify meat and vegetable dishes prior to eating. After the meal, participants indicated their diet preference in terms of appearance, taste, and overall liking. Results: 145 participants were recruited, of which 126 completed data collection. 86% correctly identified moulded meat dishes, 69% correctly identified moulded vegetable dishes, with an overall 77% accuracy in identifying moulded puree side dishes. On unmoulded puree side dishes, participants correctly identified 25% of meat dishes, 4% of vegetable dishes, with an overall accuracy of 14%. In terms of preference, the moulded puree was preferred, with 81% for appearance, 76% for taste and 75% for overall preference. When participants had differing preferences for appearance and taste (e.g., prefers unmoulded puree appearance and moulded puree taste), 95% of them subsequently aligned their overall preference with their taste preference (i.e., overall preferred moulded pureed diet). This suggests that taste has a stronger influence on overall preference compared to appearance. Discussion: Findings indicate that a moulded pureed diet made from modified maize starch led to improved recognisability, taste, appearance, and overall liking compared to an unmoulded pureed diet made from potato starch. Taste had a stronger influence on overall preference compared to appearance. These findings capture patient preferences and may have implications on how hospital pureed diets may be improved, potentially improving patient nutrition and health outcomes.

20.
Inorg Chem ; 62(42): 17182-17190, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37815498

ABSTRACT

Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.

SELECTION OF CITATIONS
SEARCH DETAIL
...