Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(16): 16867-16877, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31646233

ABSTRACT

A novel sky-blue-emitting tripyrenylpyridine derivative, 2,4,6-tri(1-pyrenyl)pyridine (2,4,6-TPP), has been synthesized using a Suzuki coupling reaction and compared with three previously reported isomeric dipyrenylpyridine (DPP) analogues (2,4-di(1-pyrenyl)pyridine (2,4-DPP), 2,6-di(1-pyrenyl)pyridine (2,6-DPP), and 3,5-di(1-pyrenyl)pyridine (3,5-DPP)). As revealed by single-crystal X-ray analysis and computational simulations, all compounds possess highly twisted conformations in the solid state with interpyrene torsional angles of 42.3°-57.2°. These solid-state conformations and packing variations of pyrenylpyridines could be correlated to observed variations in physical characteristics such as photo/thermal stability and spectral properties, but showed only marginal influence on electrochemical properties. The novel derivative, 2,4,6-TPP, exhibited the lowest degree of crystallinity as revealed by powder X-ray diffraction analysis and formed amorphous thin films as verified using grazing-incidence wide-angle X-ray scattering. This compound also showed high thermal/photo stability relative to its disubstituted analogues (DPPs). Thus, a nondoped organic light-emitting diode (OLED) prototype was fabricated using 2,4,6-TPP as the emissive layer, which displayed a sky-blue electroluminescence with Commission Internationale de L'Eclairage (CIE) coordinates of (0.18, 0.34). This OLED prototype achieved a maximum external quantum efficiency of 6.0 ± 1.2% at 5 V. The relatively high efficiency for this simple-architecture device reflects a good balance of electron and hole transporting ability of 2,4,6-TPP along with efficient exciton formation in this material and indicates its promise as an emitting material for design of blue OLED devices.

2.
Org Lett ; 20(17): 5181-5185, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30148367

ABSTRACT

Two classes of thioglycoside, 4-(4-methoxyphenyl)-3-butenylthioglycosides (MBTGs) and 4-(4-methoxyphenyl)-4-pentenylthioglycosides (MPTGs), undergo acid-catalyzed O-glycosylations with a range of sugar and nonsugar alcohols at 25 °C. Electron density at the styrene alkene is critical for reactivity while sugar protecting group patterns have a minimal effect. In contrast with most methods for thioglycoside activation, acid-catalyzed activation of MBTGs is compatible with electroneutral alkenes.

3.
Beilstein J Nanotechnol ; 8: 1863-1877, 2017.
Article in English | MEDLINE | ID: mdl-29046834

ABSTRACT

Visible-light irradiation of phthalimide esters in the presence of the photosensitizer [Ru(bpy)3]2+ and the stoichiometric reducing agent benzyl nicotinamide results in the formation of alkyl radicals under mild conditions. This approach to radical generation has proven useful for the synthesis of small organic molecules. Herein, we demonstrate for the first time the visible-light photosensitized deposition of robust alkyl thin films on Au surfaces using phthalimide esters as the alkyl radical precursors. In particular, we combine visible-light photosensitization with particle lithography to produce nanostructured thin films, the thickness of which can be measured easily using AFM cursor profiles. Analysis with AFM demonstrated that the films are robust and resistant to mechanical force while contact angle goniometry suggests a multilayered and disordered film structure. Analysis with IRRAS, XPS, and TOF SIMS provides further insights.

4.
J Am Chem Soc ; 136(41): 14438-44, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25244537

ABSTRACT

Visible light photoredox catalysis was combined with immersion particle lithography to prepare polynitrophenylene organic films on Au(111) surfaces, forming a periodic arrangement of nanopores. Surfaces masked with mesospheres were immersed in solutions of p-nitrobenzenediazonium tetrafluoroborate and irradiated with blue LEDs in the presence of the photoredox catalyst Ru(bpy)3(PF6)2 to produce p-nitrophenyl radicals that graft onto gold substrates. Surface masks of silica mesospheres were used to protect small, discrete regions of the Au(111) surface from grafting. Nanopores were formed where the silica mesospheres touched the surface; the mask effectively protected nanoscopic local areas from the photocatalysis grafting reaction. Further reaction of the grafted arenes with aryl radicals resulted in polymerization to form polynitrophenylene structures with thicknesses that were dependent on both the initial concentration of diazonium salt and the duration of irradiation. Photoredox catalysis with visible light provides mild, user-friendly conditions for the reproducible generation of multilayers with thicknesses ranging from 2 to 100 nm. Images acquired with atomic force microscopy (AFM) disclose the film morphology and periodicity of the polymer nanostructures. The exposed sites of the nanopores provide a baseline to enable local measurements of film thickness with AFM. The resulting films of polynitrophenylene punctuated with nanopores provide a robust foundation for further chemical steps. Spatially selective binding of mercaptoundecanoic acid to exposed sites of Au(111) was demonstrated, producing a periodic arrangement of thiol-based nanopatterns within a matrix of polynitrophenylene.

SELECTION OF CITATIONS
SEARCH DETAIL
...