Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Foods ; 11(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36496743

ABSTRACT

In this study, a new heteropolysaccharide extracted from Lobularia maritima (L.) Desv. (LmPS), a halophyte harvested in Tunisia, was evaluated as an antioxidant and antibacterial additive in the bio-preservation of raw minced meat. For antibacterial testing, Gram-positive bacteria such as Staphylococcus aureus ATCC and Listeria monocytogenes ATCC 19,117 and Gram-negative bacteria such as Salmonella enterica ATCC 43,972 and Escherichia coli ATCC 25,922 were used. The results indicate that this polymer had a significant antibacterial activity against foodborne pathogens. Additionally, the effects of LmPS at 0.15, 0.3 and 0.6% on refrigerated raw ground beef were investigated from a microbiological, chemical, and sensory perspective. Microbiological analysis of the meat showed that treatment with LmPS significantly (p < 0.05) improved its shelf life, while the biochemical analysis evidenced a significant (p < 0.05) decrease in lipid oxidation. LmPS at 0.6% significantly reduced by 61% and 48% metmyoglobin accumulation at the end of the storage period when compared to BHT and control samples, respectively. The chemometric approach highlighted the relationships among the different meat quality parameters. LmPS can be introduced in the food industry as a powerful natural additive and could be an alternative to synthetic antioxidant compounds.

2.
Plants (Basel) ; 11(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890464

ABSTRACT

Tomato (Solanum lycopersicum L.) is globally recognised as a high-value crop both for commercial profit and nutritional benefits. In contrast to the extensive data regarding the changes in the metabolism of tomato fruit exposed to UV radiation, less is known about the foliar and root metabolome. Using an untargeted metabolomic approach through UHPLC-ESI-QTOF-MS analysis, we detected thousands of metabolites in the leaves (3000) and roots (2800) of Micro-Tom tomato plants exposed to 11 days of short daily UV radiation, applied only on the aboveground organs. Multivariate statistical analysis, such as OPLS-DA and volcano, were performed to allow a better understanding of the modifications caused by the treatment. Based on the unexpected modulation to the secondary metabolism, especially the phenylpropanoid pathway, of which compounds were down and up accumulated respectively in leaves and roots of treated plants, a phenolic profiling was carried out for both organs. The phenolic profile was associated with a gene expression analysis to check the transcription trend of genes involved in the UVR8 signalling pathway and the early steps of the phenolic biosynthesis. The retention of the modifications at metabolic and phenolic levels was also investigated 3 days after the UV treatment, showing a prolonged effect on the modulation once the UV treatment had ceased.

3.
Plants (Basel) ; 11(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631728

ABSTRACT

Leaf removal is a canopy management practice widely applied in viticulture to enhance the phenol composition and concentration of grapes, which then results in improved wine quality. Many studies were carried out on red berried varieties, but information on white ones is scanty. The aim of the study was to assess the effect of basal leaf defoliation in post fruit set on the phenol composition, ascorbate level and antioxidant activity of Trebbiano grapes. Electron paramagnetic resonance was also employed to monitor the decay kinetics of 1,1-diphenyl-2-picrylhydrazyl which allowed the identification of antioxidants with different action rates. The results show that defoliation caused an increase in the phenolic acid (hydroxycinnamic and hydroxybenzoic acids) and flavonol concentrations of berries without changes in the composition. Both ascorbate and antioxidant activity were also enhanced in the berries from defoliated vines. Besides increasing the number of fast-rate antioxidants, leaf removal resulted in the formation of intermediate-rate ones. In the Trebbiano variety, leaf removal in the post fruit set may represent an effective strategy to enhance the phenolic composition and the antioxidant defense system of berries.

4.
Funct Plant Biol ; 49(9): 810-821, 2022 08.
Article in English | MEDLINE | ID: mdl-35598892

ABSTRACT

Ultraviolet (UV) radiation, unless present at high doses, is recognised as a regulator of plant growth and some specific processes. The present study investigated the influence of short daily UV irradiation (15min/day, 11days) on leaf gas exchange and some biochemical and molecular markers of leaf senescence (such as stomata movements, chlorophyll breakdown, anthocyanin production, senescence-associated genes) in Micro-Tom tomato plants. The UV-induced reduction of g s (stomatal conductance) during the treatment was associated with the modified expression of some genes involved in the control of stomatal movements. We hypothesise a two-step regulation of stomatal closure involving salicylic and abscisic acid hormones. The temporal changes of g s and A net (net photosynthetic CO2 assimilation rate) along with the pigment behaviour, suggest a possible delay of leaf senescence in treated plants, confirmed by the expression levels of genes related to senescence such as SAG113 and DFR . The UV potential to induce a persistent partial inhibition of g s without severely affecting A net led to an increased iWUE (intrinsic water-use efficiency) during the 11-day treatment, suggesting a priming effect of short daily UV radiation towards drought conditions potentially useful in reducing the excess water use in agriculture.


Subject(s)
Solanum lycopersicum , Abscisic Acid/pharmacology , Solanum lycopersicum/genetics , Photosynthesis , Plant Leaves , Water/metabolism
5.
Foods ; 10(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923099

ABSTRACT

This research aimed to explore the feasibility of fortifying bread with cooked Vitelotte potato powder and Citrus albedo, comparing the use of baker's yeast or sourdough as leavening agents. Breads obtained were thus subjected to physico-chemical and sensory characterizations. The replacement of part of the wheat flour with purple potato and albedo determined a significant enhancement of the phenolic profile and antioxidant status of fortified breads, as well as a longer shelf life. Thanks to its acidity and antimicrobial activity, sourdough improved the levels of health-promoting compounds and stability. Both the fortification and the leavening agent deeply affected the organoleptic, expression, and the aroma profile, of the fortified bread. Interestingly, albedo addition, despite its effectiveness in boosting the phenolic profile, determined a higher perception of aftertaste and bitterness, irrespective of the leavening agent. Based on these results, the use of purple potatoes and Citrus albedo, if properly formulated, could represent a valuable strategy for the development of high-quality products, with longer shelf-life.

6.
J Sci Food Agric ; 101(5): 1732-1743, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-32914410

ABSTRACT

As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.


Subject(s)
Bread/analysis , Food Ingredients/analysis , Triticum/chemistry , Bread/microbiology , Bread/standards , Fermentation , Food Handling , Food Storage , Humans , Quality Control , Saccharomyces cerevisiae/metabolism , Triticum/metabolism , Triticum/microbiology
7.
Sci Rep ; 10(1): 12856, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732890

ABSTRACT

The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker's yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.


Subject(s)
Bread/microbiology , Edible Grain/microbiology , Fermentation/physiology , Flour/microbiology , Saccharomyces cerevisiae/physiology , Saccharomycetales/physiology , 6-Phytase/metabolism , Anthocyanins/metabolism , Antioxidants/metabolism , Bread/analysis , Edible Grain/anatomy & histology , Flour/analysis , Hydroxybenzoates/metabolism , Polyphenols/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Xanthophylls/metabolism
8.
Plant Physiol Biochem ; 148: 291-301, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32000106

ABSTRACT

During the last decades, many studies investigated the effects of UV-B on the above-ground organs of plants, directly reached by the radiation but, to the best of our knowledges, the influence of mild UV-B doses on root hormones was not explored. Consequently, this research aimed at understanding whether low, not-stressful doses of UV-B radiation applied above-ground influenced the hormone concentrations in leaves and roots of Micro-Tom tomato (Solanum lycopersicum L.) plants during 11 days of treatment and after 3 days of recovery. In particular, ethylene, abscisic acid, jasmonic acid, salicylic acid and indoleacetic acid were investigated. The unchanged levels of chlorophyll a and b, lutein, total xanthophylls and carotenoids, as well as the similar H2O2 concentration between control and treated groups suggest that the UV-B dose applied was well tolerated by the plants. Leaf ethylene emission decreased after 8 and 11 days of irradiation, while no effect was found in roots. Conversely, indoleacetic acid underwent a significant reduction in both organs, though in the roots the decrease occurred only at the end of the recovery period. Salicylic acid increased transiently in both leaves and roots on day 8. Changes in leaf and root hormone levels induced by UV-B radiation were not accompanied by marked alterations of plant architecture. The results show that irradiation of above-ground organs with low UV-B doses can affect the hormone concentrations also in roots, with likely implications in stress and acclimation responses mediated by these signal molecules.


Subject(s)
Plant Growth Regulators , Plant Leaves , Plant Roots , Solanum lycopersicum/radiation effects , Ultraviolet Rays , Solanum lycopersicum/chemistry , Plant Growth Regulators/analysis , Plant Growth Regulators/chemistry , Plant Leaves/chemistry , Plant Leaves/radiation effects , Plant Roots/chemistry , Plant Roots/radiation effects
9.
Molecules ; 24(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31330951

ABSTRACT

The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus leaf addition on the nutraceutical and sensorial profiles of olive oil. This study aimed at comparing the chemical and sensorial qualities of olive oils obtained from ripe olives pressed together with either Olea or Citrus spp. (lemon or orange) cryomacerated leaves. General composition parameters as well as major antioxidants and antioxidant activity were measured. A panel test evaluation, as well as headspace volatile characterization (headspace solid phase microextraction, HS-SPME), were also performed. All data were compared with an EVOO extracted from the same olive batch used as control. It was possible to obtain Leaf Olive Oils (LOOs) characterized by a higher (p < 0.05) content of antioxidants, compared to the control sample, and the highest oleuropein concentration was detected in the olive oil extracted in presence of olive leaf (+50% in comparison with the control). All the LOOs showed a higher smell complexity and the scent of ripe fruit was generally mitigated. Lemon and olive LOOs showed the best smell profile.


Subject(s)
Citrus/chemistry , Olea/chemistry , Olive Oil/chemistry , Plant Leaves/chemistry , Chemical Fractionation , Dietary Supplements , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olive Oil/isolation & purification , Olive Oil/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology
10.
Molecules ; 24(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717325

ABSTRACT

The aim of the present research was to study the effects of olive leaf addition (0 and 3%) on the major antioxidants and the antioxidant activity of Neb Jmel and Oueslati olive oils. Olives and leaves of the two Tunisian varieties were harvested during the 2016/2017 crop season. Both leaves and oils were characterised for their concentrations in phenolics, tocopherols and antioxidant power. Other parameters such as free acidity, peroxide value, chlorophyll and carotenoid concentrations were also taken into consideration. Compared to Oueslati, the Neb Jmel oil showed a lower free acidity (50%) and peroxide value (5.6-fold), and higher chlorophyll (1.6-fold), total phenolics (1.3-fold), flavonoid (3-fold) and oleuropein derivative (1.5-fold) concentrations, in addition to an increased antioxidant activity (1.6-fold). Leaf addition promoted a significant increment in total chlorophyll, α-tocopherol and phenolics in both varieties, above all in Oueslati oil, due to a higher abundance of bioactive constituents in the corresponding leaves. In particular, chlorophyll and carotenoid concentrations reached values twice higher than in Neb Jmel leaves, and flavonoids and oleouperin derivatives were three-fold higher. This prevented the oxidation and the formation of peroxides, reducing the peroxide value of the fortified oil to the half. The results provide evidence on the performance of the Tunisian Neb Jmel and Oueslati varieties, showing that their oils present a chemical profile corresponding to the extra virgin olive oil category and that, after leaf addition, their nutritional value was improved.


Subject(s)
Antioxidants/chemistry , Dietary Supplements , Olive Oil/chemistry , Phenols/chemistry , Humans , Olea/chemistry , Peroxides/chemistry , Tocopherols/chemistry
11.
Molecules ; 24(1)2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30585205

ABSTRACT

The essential oils extracted from the peels of two Tuscany Citrus of the Massa province have been characterised. Moreover, the flavedo of these species has been used in the production of two Citrus olive oils (COOs) obtained with an innovative method in which the citrus peels are cryomacerated and then pressed with the olives. The presence of functional compounds, such as carotenoids, naringenin and minor phenolics, classifies these COOs as nutraceuticals with the potential to develop enriched foods able to promote a healthy diet. Moreover, the increased presence of tyrosol and hydroxytyrosol, compared to the unflavoured oil, further highlights the nutritional value to the two COOs, being these phenolic compounds recognized as good possible therapeutic candidates for the inhibition of neurodegenerative diseases as the Parkinson's disease. In this perspective, the citrus peels, rich in bioactive compounds, have been valued transforming their waste nature in an innovative resource.


Subject(s)
Citrus/chemistry , Dietary Supplements/analysis , Olea/chemistry , Plant Oils/chemistry , Carotenoids/chemistry , Flavanones/chemistry , Food, Fortified/analysis , Oils, Volatile/chemistry , Phenols/chemistry , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry
12.
Heliyon ; 4(11): e00888, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30417155

ABSTRACT

This research aimed to study the effects of packaging and storage temperature on the shelf-life of an extra virgin olive oil (EVOO) as it can occur in most points of sale. The evolution of the chemical and sensory characteristics of an EVOO, initially stored in stainless steel silos under nitrogen at 12-18 °C, was evaluated after packaging. Tinplate tin (TT) and greenish glass (GG), the most used packaging containers, and temperatures of 6 and 26 °C were taken into consideration. After 125 days from packaging all the samples maintained clearness, green and yellow reflections and the positive sensory notes of bitterness and pungency of the starting EVOO. Shelf-life of EVOO was significantly affected by different storage conditions: oil samples stored in GG at 6 °C preserved for the most part the positive attributes, whereas those stored in TT at 26 °C showed a significant presence of the rancid flavor due to oxidative processes. Moreover, samples stored in GG at 6 °C maintained the highest bitterness intensity and did not show defects at the end of the storage period. The results suggest that storage in GG at a low temperature could represent a promising storage condition to slow-down the oil degradation during market storage.

13.
Plant Physiol Biochem ; 123: 233-241, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29253801

ABSTRACT

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.


Subject(s)
Carbon Dioxide/pharmacology , Flavonoids/biosynthesis , Lactuca/metabolism , Light , Phenols/metabolism
14.
Genom Data ; 13: 64-66, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28736702

ABSTRACT

The availability of transcriptomic data sequence is a key step for functional genomics studies. Recently, a repertoire of predicted genes of a Japanese cultivar of fig (Ficus carica L.) was released. Because of the great phenotypic variability that can be found in this species, we decided to study another fig genotype, the Italian cv. Dottato, in order to perform comparative studies between the two cultivars and extend the pan genome of this species. We isolated, sequenced and assembled fig genomic DNA from young fruits of cv. Dottato. Then, putative gene sequences were predicted and annotated. Finally, a comparison was performed between cvs. Dottato and Horaishi predicted transcriptomes. Our data provide a resource (available at the Sequence Read Archive database under SRP109082) to be used for functional genomics of fig, in order to fill the gap of knowledge still existing in this species concerning plant development, defense and adaptation to the environment.

15.
J Agric Food Chem ; 65(27): 5443-5452, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28656773

ABSTRACT

The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.


Subject(s)
Dietary Supplements/analysis , Flour/analysis , Iron/analysis , Triticum/chemistry , Zinc/analysis , Zinc/metabolism , Biofortification , Bread/analysis , Cooking , Food, Fortified/analysis , Humans , Iron/metabolism
16.
Plant Physiol Biochem ; 115: 269-278, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28411511

ABSTRACT

Both salt stress and high CO2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO2, alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO2, reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone.


Subject(s)
Carbon Dioxide/pharmacology , Lactuca/drug effects , Lactuca/metabolism , Phenols/metabolism , Anthocyanins/metabolism , Antioxidants/metabolism , Flavones/metabolism , Glucosides/metabolism , Quercetin/analogs & derivatives , Quercetin/metabolism , Salinity , Sodium Chloride/pharmacology
17.
J Agric Food Chem ; 62(49): 12001-7, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25389053

ABSTRACT

Differently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants. The results showed that as long as lettuce had higher red pigmentation, the hydrophilic antioxidant capacity increased together with the contents in free and conjugated phenolic acids, free and conjugated flavonoids, and anthocyanins. EPR allowed the identification of slow-rate antioxidants in green and green/red cultivars, intermediate-rate antioxidants in green, green/red, and red cultivars, and fast-rate antioxidants in green/red and red cultivars. At present, the different kinetic behaviors cannot be attributed to a specific antioxidant, but it is suggested that the flavonoid quercetin accounted for the majority of the intermediate-rate antioxidants, whereas the anthocyanins accounted for the majority of the fast-rate antioxidants.


Subject(s)
Antioxidants/chemistry , Electron Spin Resonance Spectroscopy/methods , Lactuca/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Kinetics , Lactuca/classification
18.
Sci Total Environ ; 427-428: 339-46, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22542302

ABSTRACT

A better understanding of the mechanisms that govern copper (Cu) uptake, distribution and tolerance in Brassica carinata plants in the presence of chelators is needed before significant progress in chelate-assisted Cu phytoextraction can be made. The aims of this study were therefore to characterise (S,S)-N,N'-ethylenediamine disuccinic acid (EDDS)-assisted Cu uptake, and to compare the spatial distribution patterns of Cu in the roots and leaves of B. carinata plants. The plants were treated with 30 µM or 150 µM CuSO(4) or CuEDDS in hydroponic solution. Quantitative Cu distribution maps and concentration profiles across root and leaf cross-sections of the desorbed plants were obtained by micro-proton induced X-ray emission. In roots, the 30 µM treatments with both CuSO(4) and CuEDDS resulted in higher Cu concentrations in epidermal/cortical regions. At 150 µM CuSO(4), Cu was mainly accumulated in root vascular bundles, whereas with 150 µM CuEDDS, Cu was detected in endodermis and the adjacent inner cortical cell layer. Under all treatments, except with a H(+)-ATP-ase inhibitor, the Cu in leaves was localised mainly in vascular tissues. The incubation of plants with 150 µM CuEDDS enhanced metal translocation to shoots, in comparison to the corresponding CuSO(4) treatment. Inhibition of H(+)-ATPase activity resulted in reduced Cu accumulation in 30 µM CuEDDS-treated roots and 150 µM CuEDDS-treated leaves, and induced changes in Cu distribution in the leaves. This indicates that active mechanisms are involved in retaining Cu in the leaf vascular tissues, which prevent its transport to photosynthetically active tissues. The physiological significance of EDDS-assisted Cu uptake is discussed.


Subject(s)
Brassica/metabolism , Copper Sulfate/metabolism , Copper/metabolism , Ethylenediamines/metabolism , Succinates/metabolism , Biodegradation, Environmental , Inactivation, Metabolic , Plant Leaves , Plant Roots/metabolism , Plant Shoots/metabolism , Soil Pollutants , Spectrometry, X-Ray Emission , Vanadates/metabolism
19.
J Plant Physiol ; 164(9): 1152-60, 2007 Sep.
Article in English | MEDLINE | ID: mdl-16920221

ABSTRACT

Wheat seedlings (Triticum durum Desf.) were incubated in a solution containing 100 microM CuSO(4) for increasing time ranging from 1 min to 6h. Copper rapidly accumulated into the roots, and its amount increased significantly until 360 min. During the experiment, copper did not cause any lipid peroxidation and K(+) leakage. Up to 60 min of copper treatment the superoxide (O2(*-)) production in root apoplast decreased concomitantly with increase in superoxide dismutase (SOD) activity. In contrast, after 60 min of incubation, SOD decreased and this facilitated an increase in O2(*-) production. In the presence of the SOD inhibitor diethyldithiocarbamic acid, O2(*-) production was more than two times higher and showed a biphasic increase. Very high SOD activity in the apoplast, due to the presence of three different isozymes, one Mn-SOD and two CuZn-SODs, dismutated the radical giving rise, at least in part, to an increase in hydrogen peroxide. The highest value of H(2)O(2) was detected at 15 min, when peroxidase (POD) activity reached the lowest value. Root apoplast showed the presence of at least five different isoforms of PODs, whose pattern did not change during the entire treatment.


Subject(s)
Copper/pharmacology , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Triticum/drug effects , Triticum/metabolism , Hydrogen Peroxide , Potassium/metabolism , Seedlings/drug effects , Seedlings/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...