Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Braz. j. microbiol ; 49(4): 879-884, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-1039268

ABSTRACT

ABSTRACT The multi-enzyme complex (crude extract) of white rot fungi Pleurotus ostreatus, Pleurotus eryngii, Trametes versicolor, Pycnosporus sanguineus and Phanerochaete chrysosporium were characterized, evaluated in the hydrolysis of pretreated pulps of sorghum straw and compared efficiency with commercial enzyme. Most fungi complexes had better hydrolysis rates compared with purified commercial enzyme.


Subject(s)
Fungal Proteins/chemistry , Sorghum/chemistry , Cellulases/chemistry , Fungi/enzymology , Lignin/chemistry , Fungal Proteins/metabolism , Plant Stems/microbiology , Plant Stems/chemistry , Sorghum/microbiology , Cellulases/metabolism , Biocatalysis , Fungi/chemistry , Hydrolysis , Lignin/metabolism
2.
Braz J Microbiol ; 49(4): 879-884, 2018.
Article in English | MEDLINE | ID: mdl-30150084

ABSTRACT

The multi-enzyme complex (crude extract) of white rot fungi Pleurotus ostreatus, Pleurotus eryngii, Trametes versicolor, Pycnosporus sanguineus and Phanerochaete chrysosporium were characterized, evaluated in the hydrolysis of pretreated pulps of sorghum straw and compared efficiency with commercial enzyme. Most fungi complexes had better hydrolysis rates compared with purified commercial enzyme.


Subject(s)
Cellulases/chemistry , Fungal Proteins/chemistry , Fungi/enzymology , Lignin/chemistry , Sorghum/chemistry , Biocatalysis , Cellulases/metabolism , Fungal Proteins/metabolism , Fungi/chemistry , Hydrolysis , Lignin/metabolism , Plant Stems/chemistry , Plant Stems/microbiology , Sorghum/microbiology
3.
3 Biotech ; 8(1): 46, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354357

ABSTRACT

The objective of this work was to optimize the total cellulase activity of the crude extract cocktails from five white rot fungi produced by solid-state fermentation, by means of the central composite design. The white rot fungi Pleurotus ostreatus PLO 06, Pleurotus eryngii PLE 04, Trametes versicolor TRAM 01, Pycnosporus sanguineus PYC 02 and Phanerochaete chrysosporium PC were tested. For optimization process aiming at the maximum value of total cellulase activity (FPAse), the multi-enzyme cellulase complexes (crude extracts) of each fungus were mixed simultaneously in different proportions. There was increase in FPAse activity for the cocktails formed by the extracts of the five fungi together, compared to the extracts of each fungus alone. The model presented the minimum cocktail of enzymes for maximum total cellulase activity, with 100.00 µL PYC; 100.00 µL PC; 100.00 µL PLO06; 100.00 µL PLE04 and 200 µL TRAM01. The maximum value found was of 304.86 U/L. The result of the cocktails was very relevant, showing that there is an enzymatic complementation in the extracts that should be further studied. Concentrated extract cocktails should also be evaluated for biomass saccharification.

4.
Vet Parasitol ; 212(3-4): 214-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26319197

ABSTRACT

Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (p<0.05) on chitinase production. The conditions of maximum chitinase activity were calculated, with the following values: incubation time 2 days, and moisture 511%. The protease and chitinase derived from D. flagrans, individually or together (after 24h), led to a significant reduction (p<0.01) in the number of intact cyathostomin L3, when compared to the control, with following reduction percentage values: 19.4% (protease), 15.5% (chitinase), and 20.5% (protease+chitinase). Significant differences were observed (p<0.05) between the group treated with proteases in relation to the group treated with proteases+chitinases. In this study, the assay with the cyathostomins showed that chitinase had a nematocidal effect, suggesting that this enzyme acts on the "fungus versus nematodes" infection process. It is known that nematode eggs are rich in chitin, and in this case, we could think of a greater employability for this chitinase.


Subject(s)
Chitinases/pharmacology , Duddingtonia/physiology , Nematoda/drug effects , Peptide Hydrolases/pharmacology , Animals , Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Enzymologic , Larva/microbiology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Pest Control, Biological
SELECTION OF CITATIONS
SEARCH DETAIL