Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Sci Rep ; 9(1): 17135, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748669

ABSTRACT

Ranaviruses (family Iridoviridae) cause important diseases in cold-blooded vertebrates. In addition, some occurrences indicate that, in this genus, the same virus can infect animals from different taxonomic groups. A strain isolated from a Ranavirus outbreak (2012) in the state of Sao Paulo, Brazil, had its genome sequenced and presented 99.26% and 36.85% identity with samples of Frog virus 3 (FV3) and Singapore grouper iridovirus (SGIV) ranaviruses, respectively. Eight potential recombination events among the analyzed sample and reference FV3 samples were identified, including a recombination with Bohle iridovirus (BIV) sample from Oceania. The analyzed sample presented several rearrangements compared to FV3 reference samples from North America and European continent. We report for the first time the complete genome of Ranavirus FV3 isolated from South America, these results contribute to a greater knowledge related to evolutionary events of potentially lethal infectious agent for cold-blooded animals.


Subject(s)
Genome, Viral/genetics , Rana catesbeiana/virology , Ranavirus/genetics , Animals , Base Sequence , Brazil , DNA Virus Infections/virology , Fish Diseases/virology , Fishes/virology , Iridoviridae/genetics , Iridoviridae/isolation & purification , North America , Phylogeny , Ranavirus/isolation & purification , Ranidae/virology , Reptiles/virology
2.
Rev Soc Bras Med Trop ; 51(1): 66-70, 2018.
Article in English | MEDLINE | ID: mdl-29513845

ABSTRACT

INTRODUCTION: Pseudo-infectious yellow fever viral particles (YFV-PIVs) have been used to study vaccines and viral packaging. Here, we report the development of a packaging cell line, which expresses the YFV prM/E proteins. METHODS: HEK293 cells were transfected with YFV prM/E and C (84 nt) genes to generate HEK293-YFV-PrM/E-opt. The cells were evaluated for their ability to express the heterologous proteins and to package the replicon repYFV-17D-LucIRES, generating YFV-PIVs. RESULTS: The expression of prM/E proteins was confirmed, and the cell line trans-packaged the replicon for recovery of a reporter for the YFV-PIVs. CONCLUSIONS: HEK293-YFV-prM/E-opt trans-packaging capacity demonstrates its possible biotechnology application.


Subject(s)
Vaccines, Virus-Like Particle/immunology , Virus Assembly/immunology , Virus Replication/immunology , Yellow fever virus/immunology , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Green Fluorescent Proteins , HEK293 Cells , Humans , Vaccines, Virus-Like Particle/genetics , Virus Assembly/genetics , Virus Replication/genetics , Yellow fever virus/genetics
3.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;51(1): 66-70, Jan.-Feb. 2018. graf
Article in English | LILACS | ID: biblio-1041442

ABSTRACT

Abstract INTRODUCTION: Pseudo-infectious yellow fever viral particles (YFV-PIVs) have been used to study vaccines and viral packaging. Here, we report the development of a packaging cell line, which expresses the YFV prM/E proteins. METHODS: HEK293 cells were transfected with YFV prM/E and C (84 nt) genes to generate HEK293-YFV-PrM/E-opt. The cells were evaluated for their ability to express the heterologous proteins and to package the replicon repYFV-17D-LucIRES, generating YFV-PIVs. RESULTS: The expression of prM/E proteins was confirmed, and the cell line trans-packaged the replicon for recovery of a reporter for the YFV-PIVs. CONCLUSIONS: HEK293-YFV-prM/E-opt trans-packaging capacity demonstrates its possible biotechnology application.


Subject(s)
Humans , Virus Replication/immunology , Yellow fever virus/immunology , Virus Assembly/immunology , Vaccines, Virus-Like Particle/immunology , Virus Replication/genetics , Yellow fever virus/genetics , Virus Assembly/genetics , Fluorescent Antibody Technique, Indirect , Green Fluorescent Proteins , HEK293 Cells , Vaccines, Virus-Like Particle/genetics , Flow Cytometry
4.
Recife; s.n; 2011. 113 p. ilus.
Thesis in Portuguese | LILACS | ID: lil-600465

ABSTRACT

A vacina da febre amarela 17D (YFV-17D) é bastante segura e uma dose única confere imunidade potente e duradoura. Por essas e outras características, diferentes tecnologias têm sido propostas para a utilização da cepa 17D como vetor vacinal. Estratégias promissoras para o desenvolvimento de novas vacinas têm se baseado na construção de quimeras YFV-17D com inserção de seqüências heterólogas e produção em larga escala de replicons empacotados em partículas pseudo-infecciosas (PPIs), no entanto, ainda não existe um consenso da melhor estratégia a ser utilizada para esses fins. O presente estudo teve por objetivo avaliar diferentes estratégias de construção para a utilização do YFV-17D como vetor vacinal. Para isso foram construídos duas quimeras do YFV-17D com inserção de um gene repórter YFP (Yellow Fluorescent Protein) na junção E/NS1 e dois replicons subgenômicos do YFV-17D expressando o gene repórter luciferase. Para a produção de PPIs foi desenvolvida a linhagem HEK-YFV-prM/E-opt. O YFV-YFPSSE revelou instabilidade genética com perda do gene YFP e correlação negativa entre expressão de proteínas virais e do gene repórter. O YFV-YFP-DENV1linker mostrou-se estável geneticamente com expressão eficiente de YFP e proteínas virais, e mostrou-se ser o mais adequado para ser utilizado como vetor viral. Os replicons do YFV-17D mostraram-se funcionais e capazes de expressar eficientemente o gene heterólogo. E, embora a linhagem HEK-YFV-prM/E-opt tenha expressado as proteínas estruturais prM e E eficientemente, poucas partículas pseudo-infecciosas foram produzidas. Diante do exposto, as diferentes estratégias de manipulação genética do YFV avaliadas neste trabalho constituem ferramentas viáveis e aplicáveis ao processo de desenvolvimento de vacinas, havendo, porém, necessidade de otimização dessas estratégias para assegurar maiores segurança e eficácia.


The yellow fever vaccine 17D (YFV-17D) is safe and a single dose confers lastingand powerful immunity. For these, different technologies have been proposed for the use of YF-17D strain as a vaccine vector. Promising strategies for the development of new vaccines has been based on chimeric YFV-17D with insertion of heterologous genes and subgenomic replicons packaged into pseudo-infectious particles (PIPs).However, there is still no consensus in the best strategy to be used for suchpurposes. This study aimed to evaluate different strategies for building for the use of YFV-17D as a vector vaccine. For that were constructed two chimeric YFV-17D with insertion of a reporter gene YFP (yellow fluorescent protein) at E/NS1 junction and two subgenomic replicons of YFV-17D expressing the luciferase reporter gene. For the production of PIPs a recombinant cell line were developed (HEK-YFV-prM/E-opt). The YFV-YFP-SSE showed genetic instability with loss of the YFP gene and negative correlation between expression of viral proteins and reporter gene. The YFV-YFPDENV1linker proved to be genetically stable with efficient expression of YFP and viral proteins, and proved to be the most suitable for use as a viral vector. The replicons ofYFV-17D were shown to be functional and able to efficiently express heterologous gene. And although the cell line HEK-YFV-prM/E-opt has expressed efficiently structural viral proteins prM and E, a few of pseudoinfectious particles were produced. In this light, the different strategies of genetic manipulation of YFV measured in this study are feasible and applicable tools to the process of vaccine development, however, the optimization of these strategies is important to ensure greater safety and efficacy.


Subject(s)
DNA, Recombinant , Replicon , Vaccines, Synthetic , Yellow fever virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL