Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 8: 29, 2015 Jan 17.
Article in English | MEDLINE | ID: mdl-25595198

ABSTRACT

BACKGROUND: Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. METHODS: In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. RESULTS: Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. CONCLUSIONS: We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.


Subject(s)
Antibodies, Viral/blood , Chagas Disease/blood , Dicistroviridae/immunology , Triatoma/virology , Americas/epidemiology , Animals , Chagas Disease/epidemiology , Chagas Disease/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Models, Biological , Portugal/epidemiology , Seroepidemiologic Studies , Viral Structural Proteins/immunology
2.
J Gen Virol ; 96(Pt 1): 64-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25304655

ABSTRACT

In contrast to the current wealth of structural information concerning dicistrovirus particle structure, very little is known about their morphogenetic pathways. Here, we describe the expression of the two ORFs encoded by the Triatoma virus (TrV) genome. TrV, a member of the Cripavirus genus of the Dicistroviridae family, infects blood-sucking insects belonging to the Triatominae subfamily that act as vectors for the transmission of Trypanosoma cruzi, the aetiological agent of the Chagas disease. We have established a baculovirus-based model for the expression of the NS (non-structural) and P1 (structural) polyproteins. A preliminary characterization of the proteolytic processing of both polyprotein precursors has been performed using this system. We show that the proteolytic processing of the P1 polyprotein is strictly dependent upon the coexpression of the NS polyprotein, and that NS/P1 coexpression leads to the assembly of virus-like particles (VLPs) exhibiting a morphology and a protein composition akin to natural TrV empty capsids. Remarkably, the unprocessed P1 polypeptide assembles into quasi-spherical structures conspicuously larger than VLPs produced in NS/P1-coexpressing cells, likely representing a previously undescribed morphogenetic intermediate. This intermediate has not been found in members of the related Picornaviridae family currently used as a model for dicistrovirus studies, thus suggesting the existence of major differences in the assembly pathways of these two virus groups.


Subject(s)
Dicistroviridae/genetics , Polyproteins/genetics , Triatoma/genetics , Viral Nonstructural Proteins/genetics , Viral Structural Proteins/genetics , Animals , Cell Line , Genome, Viral/genetics , Trypanosoma cruzi/virology
3.
Biomed Res Int ; 2013: 218593, 2013.
Article in English | MEDLINE | ID: mdl-23710438

ABSTRACT

Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.


Subject(s)
Dicistroviridae/isolation & purification , Insect Viruses/isolation & purification , Triatoma/virology , Animals , Dicistroviridae/genetics , Feces/virology , RNA/genetics
4.
Parasit Vectors ; 6: 66, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23497610

ABSTRACT

BACKGROUND: Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas' vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. METHODS: In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. RESULTS: In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. CONCLUSIONS: We conclude that, under our experimental conditions, TrV is unable to replicate in mice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.


Subject(s)
Antibodies, Viral/blood , Arthropods/virology , Dicistroviridae/physiology , Triatoma/virology , Animals , Dicistroviridae/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Models, Animal , Pest Control, Biological , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...