Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Appl Spectrosc ; 77(11): 1311-1324, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774686

ABSTRACT

The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation (r = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO4) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO4) content (r = 0.75) and carbonate (CO3) content (r = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation (r = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO4 content and heterogeneity, collagen integrity, and CO3 content) could significantly predict proximal femoral stiffness (R2 = 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.


Subject(s)
Bone and Bones , Minerals , Spectroscopy, Fourier Transform Infrared/methods , Phosphates , Collagen
2.
Cell Death Dis ; 14(7): 447, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468461

ABSTRACT

Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue.


Subject(s)
Calcinosis , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Humans , Mice , Calcinosis/pathology , Diphosphates/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/pathology , Loss of Function Mutation , Phenotype , X-Ray Microtomography
3.
Front Bioeng Biotechnol ; 10: 885369, 2022.
Article in English | MEDLINE | ID: mdl-36082171

ABSTRACT

Standard assessment of cartilage repair progression by visual arthroscopy can be subjective and may result in suboptimal evaluation. Visible-near infrared (Vis-NIR) fiber optic spectroscopy of joint tissues, including articular cartilage and subchondral bone, provides an objective approach for quantitative assessment of tissue composition. Here, we applied this technique in the 350-2,500 nm spectral region to identify spectral markers of osteochondral tissue during repair with the overarching goal of developing a new approach to monitor repair of cartilage defects in vivo. Full thickness chondral defects were created in Yucatan minipigs using a 5-mm biopsy punch, and microfracture (MFx) was performed as a standard technique to facilitate repair. Tissues were evaluated at 1 month (in adult pigs) and 3 months (in juvenile pigs) post-surgery by spectroscopy and histology. After euthanasia, Vis-NIR spectra were collected in situ from the defect region. Additional spectroscopy experiments were carried out in vitro to aid in spectral interpretation. Osteochondral tissues were dissected from the joint and evaluated using the conventional International Cartilage Repair Society (ICRS) II histological scoring system, which showed lower scores for the 1-month than the 3-month repair tissues. In the visible spectral region, hemoglobin absorbances at 540 and 570 nm were significantly higher in spectra from 1-month repair tissue than 3-month repair tissue, indicating a reduction of blood in the more mature repair tissue. In the NIR region, we observed qualitative differences between the two groups in spectra taken from the defect, but differences did not reach significance. Furthermore, spectral data also indicated that the hydrated environment of the joint tissue may interfere with evaluation of tissue water absorbances in the NIR region. Together, these data provide support for further investigation of the visible spectral region for assessment of longitudinal repair of cartilage defects, which would enable assessment during routine arthroscopy, particularly in a hydrated environment.

4.
Biol Open ; 11(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35608281

ABSTRACT

The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.5 mouse embryo hindlimbs and discovered that cavitation initiates around E15.0 with emergence of multiple, discrete, µm-wide tissue discontinuities we term microcavities in interzone, evolving into a single joint-wide cavity within 12 h in knees and within 72-84 h in interphalangeal joints. The microcavities were circumscribed by cells as revealed by mTmG imaging and exhibited a carbohydrate and protein content based on infrared spectral imaging at micro and nanoscale. Accounting for differing cavitation kinetics, we found that the growing femur and tibia anlagen progressively flexed at the knee over time, with peak angulation around E15.5 exactly when the full knee cavity consolidated; however, interphalangeal joint geometry changed minimally over time. Indeed, cavitating knee interzone cells were elongated along the flexion angle axis and displayed oblong nuclei, but these traits were marginal in interphalangeal cells. Conditional Gdf5Cre-driven ablation of Has2 - responsible for production of the joint fluid component hyaluronic acid (HA) - delayed the cavitation process. Our data reveal that cavitation is a stepwise process, brought about by sequential action of microcavities, skeletal flexion and elongation, and HA accumulation. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Hindlimb , Joints , Animals , Embryo, Mammalian , Hindlimb/embryology , Joints/embryology , Mice
5.
Analyst ; 147(8): 1730-1741, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35343541

ABSTRACT

Tissue engineering of cartilage for tissue repair has many challenges, including the inability to assess when the developing construct has reached compositional maturity for implantation. The goal of this study was to provide a novel analytical approach to nondestructively assess tissue engineered cartilage (TEC) during in vitro development. We applied attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to establish a quick and straightforward method to evaluate consumption of glucose and secretion of the metabolite lactate in the culture media, processes that are associated with tissue development. Using a series of standards, we showed by principal component analysis (PCA) that ATR-FTIR data was able to distinguish culture media with varying amounts of glucose and lactate. The 2nd derivative spectra displayed specific peaks of glucose at 1035 cm-1 and lactate at 1122 cm-1, and both the spectral first principal component (PC-1) scores and the 1122/1035 peak ratio very strongly correlated with the concentration of these components. TEC was prepared using chondrogenic cells grown in hydrogels, and analyzed for cell viability, distribution, and formation of proteoglycan (PG, a major cartilage protein). ATR-FTIR data of the cell culture media harvested during TEC development showed that the spectral PC-1 and the 1122/1035 peak ratio could significantly distinguish cultures with different amounts of constructs (1, 3 or 5 constructs per well) or with constructs at different developmental stages (3 or 5 weeks of culture). Interestingly, we also found that the PG content of the TEC was significantly correlated with both spectral PC-1 (r = -0.79) and the 1122/1035 peak ratio (r = 0.80). Therefore, monitoring relative glucose and lactate concentrations in cell culture media by ATR-FTIR provides a novel nondestructive approach to assess development of TEC.


Subject(s)
Cartilage , Tissue Engineering , Biomarkers/analysis , Cell Culture Techniques , Culture Media , Fourier Analysis , Glucose/analysis , Lactic Acid/analysis , Spectroscopy, Fourier Transform Infrared/methods , Tissue Engineering/methods
6.
Appl Spectrosc ; 76(4): 416-427, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34643134

ABSTRACT

Applications of vibrational spectroscopy to assess bone disease and therapeutic interventions are continually advancing, with tissue mineral and protein composition frequently investigated. Here, we used two spectroscopic approaches for determining bone composition in a mouse model (oim) of the brittle bone disease osteogenesis imperfecta (OI) with and without antiresorptive agent treatment (alendronate, or ALN, and RANK-Fc). Near-infrared (NIR) spectral analysis using a fiber optic probe and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) mode were applied to investigate bone composition, including water, mineral, and protein content. Spectral parameters revealed differences among the control wildtype (WT) and OIM groups. NIR spectral analysis of protein and water showed that OIM mouse humerii had ∼50% lower protein and ∼50% higher overall water content compared to WT bone. Moreover, some OIM-treated groups showed a reduction in bone water compared to OIM controls, approximating values observed in WT bone. Differences in bone quality based on increased mineral content and reduced carbonate content were also found between some groups of treated OIM and WT bone, but crystallinity did not differ among all groups. The spectroscopically determined parameters were evaluated for correlations with gold-standard mechanical testing values to gain insight into how composition influenced bone strength. As expected, bone mechanical strength parameters were consistently up to threefold greater in WT mice compared to OIM groups, except for stiffness in the ALN-treated OIM groups. Furthermore, bone stiffness, maximum load, and post-yield displacement showed the strongest correlations with NIR-determined protein content (positive correlations) and bound-water content (negative correlations). These results demonstrate that in this study, NIR spectral parameters were more sensitive to bone composition differences than ATR parameters, highlighting the potential of this nondestructive approach for screening of bone diseases and therapeutic efficacy in pre-clinical models.


Subject(s)
Osteogenesis Imperfecta , Alendronate/therapeutic use , Animals , Bone and Bones , Disease Models, Animal , Mice , Minerals/therapeutic use , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/metabolism , Water
7.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572384

ABSTRACT

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


Subject(s)
Bone and Bones/cytology , Cartilage/cytology , Connective Tissue/physiology , Spectrum Analysis, Raman/methods , Animals , Bone and Bones/chemistry , Cartilage/chemistry , Fiber Optic Technology , Humans , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared
8.
Nat Protoc ; 16(2): 1297-1329, 2021 02.
Article in English | MEDLINE | ID: mdl-33462441

ABSTRACT

Near-infrared (NIR) spectroscopy is a powerful analytical method for rapid, non-destructive and label-free assessment of biological materials. Compared to mid-infrared spectroscopy, NIR spectroscopy excels in penetration depth, allowing intact biological tissue assessment, albeit at the cost of reduced molecular specificity. Furthermore, it is relatively safe compared to Raman spectroscopy, with no risk of laser-induced photothermal damage. A typical NIR spectroscopy workflow for biological tissue characterization involves sample preparation, spectral acquisition, pre-processing and analysis. The resulting spectrum embeds intrinsic information on the tissue's biomolecular, structural and functional properties. Here we demonstrate the analytical power of NIR spectroscopy for exploratory and diagnostic applications by providing instructions for acquiring NIR spectra, maps and images in biological tissues. By adapting and extending this protocol from the demonstrated application in connective tissues to other biological tissues, we expect that a typical NIR spectroscopic study can be performed by a non-specialist user to characterize biological tissues in basic research or clinical settings. We also describe how to use this protocol for exploratory study on connective tissues, including differentiating among ligament types, non-destructively monitoring changes in matrix formation during engineered cartilage development, mapping articular cartilage proteoglycan content across bovine patella and spectral imaging across the depth-wise zones of articular cartilage and subchondral bone. Depending on acquisition mode and experiment objectives, a typical exploratory study can be completed within 6 h, including sample preparation and data analysis.


Subject(s)
Connective Tissue/metabolism , Connective Tissue/physiology , Spectroscopy, Near-Infrared/methods , Animals , Cartilage, Articular/chemistry , Connective Tissue Cells/cytology , Humans , Proteoglycans/chemistry , Specimen Handling/methods
9.
Cartilage ; 13(2_suppl): 722S-733S, 2021 12.
Article in English | MEDLINE | ID: mdl-33100027

ABSTRACT

OBJECTIVE: Articular cartilage exists in a hypoxic environment, which motivates the use of hypoxia-simulating chemical agents to improve matrix production in cartilage tissue engineering. The aim of this study was to investigate whether dimethyloxalylglycine (DMOG), a HIF-1α stabilizer, would improve matrix production in 3-dimensional (3D) porcine synovial-derived mesenchymal stem cell (SYN-MSC) co-culture with chondrocytes. DESIGN: Pellet cultures and scaffold-based engineered cartilage were grown in vitro to determine the impact of chemically simulated hypoxia on 2 types of 3D cell culture. DMOG-treated groups were exposed to DMOG from day 14 to day 21 and grown up to 6 weeks with n = 3 per condition and time point. RESULTS: The addition of DMOG resulted in HIF-1α stabilization in the exterior of the engineered constructs, which resulted in increased regional type II collagen deposition, but the stabilization did not translate to overall increased extracellular matrix deposition. There was no increase in HIF-1α stabilization in the pellet cultures. DMOG treatment also negatively affected the mechanical competency of the engineered cartilage. CONCLUSIONS: Despite previous studies that demonstrated the efficacy of DMOG, here, short-term treatment with DMOG did not have a uniformly positive impact on the chondrogenic capacity of SYN-MSCs in either pellet culture or in scaffold-based engineered cartilage, as evidenced by reduced matrix production. Such 3D constructs generally have a naturally occurring hypoxic center, which allows for the stabilization of HIF-1α in the interior tissue. Thus, short-term addition of DMOG may not further improve this in cartilage tissue engineered constructs.


Subject(s)
Cartilage, Articular , Tissue Engineering , Amino Acids, Dicarboxylic , Animals , Chondrogenesis , Swine , Tissue Engineering/methods
10.
Analyst ; 145(10): 3713-3724, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32342066

ABSTRACT

Water is an important component of bone and plays a key role in its mechanical and structural integrity. Water molecules in bone are present in different locations, including loosely or tightly bound to the matrix and/or mineral (biological apatite) phases. Identification of water location and interactions with matrix components impact bone function but have been challenging to assess. Here, we used near infrared (NIR) spectroscopy to identify loosely and tightly bound water present in cortical bone. In hydrated samples, NIR spectra have two primary water absorption bands at frequencies of ∼5200 and 7000 cm-1. Using lyophilization and hydrogen-deuterium exchange assays, we showed that these absorption bands are primarily associated with loosely bound bone water. Using further demineralization assays, thermal denaturation, and comparison to standards, we found that these absorption bands have underlying components associated with water molecules tightly bound to bone. In dehydrated samples, the peak at ∼5200 cm-1 was assigned to a combination of water tightly bound to collagen and to mineral, whereas the peak at 7000 cm-1 was exclusively associated with tightly bound mineral water. We also found significant positive correlations between the NIR mineral absorption bands and the mineral content as determined by an established mid infrared spectroscopic parameter, phosphate/amide I. Moreover, the NIR water data showed correlation trends with tissue mineral density (TMD) in cortical bone tissues. These observations reveal the ability of NIR spectroscopy to non-destructively identify loosely and tightly bound water in bone, which could have further applications in biomineralization and biomedical studies.


Subject(s)
Cortical Bone/metabolism , Spectroscopy, Near-Infrared , Water/metabolism , Animals , Bone Density , Collagen/metabolism , Cortical Bone/physiology , Humans , Swine
11.
Tissue Eng Part C Methods ; 26(4): 225-238, 2020 04.
Article in English | MEDLINE | ID: mdl-32131710

ABSTRACT

Near infrared (NIR) spectroscopy using a fiber optic probe shows great promise for the nondestructive in situ monitoring of tissue engineered construct development; however, the NIR evaluation of matrix components in samples with high water content is challenging, as water absorbances overwhelm the spectra. In this study, we established approaches by which NIR spectroscopy can be used to select optimal individual engineered hydrogel constructs based on matrix content and mechanical properties. NIR spectroscopy of dry standard compounds allowed identification of several absorbances related to collagen and/or proteoglycan (PG), of which only two could be identified in spectra obtained from hydrated constructs, at ∼5940 and 5800 cm-1. In dry sample mixtures, the ratio of these peaks correlated positively to collagen and negatively to PG. In NIR spectra from engineered cartilage hydrogels, these peaks reflected higher collagen and PG content and dynamic modulus values, permitting the differentiation of constructs with poor and good matrix development. Similarly, the increasing baseline offset in raw NIR spectra also reflected matrix development in hydrated constructs. However, weekly monitoring of NIR spectra and the peaks at ∼5940 and 5800 cm-1 was not adequate to differentiate individual constructs based on matrix composition. Interestingly, changes in the baseline offset of raw spectra could be used to evaluate the growth trajectory of individual constructs. These results demonstrate an optimal approach for the use of fiber optic NIR spectroscopy for in situ monitoring of the development of engineered cartilage, which will aid in identifying individual constructs for implantation. Impact statement A current demand in tissue engineering is the establishment of nondestructive approaches to evaluate construct development during growth in vitro. In this article, we demonstrate original nondestructive approaches by which fiber optic NIR spectroscopy can be used to assess matrix (PG and collagen) formation and mechanical properties in hydrogel-based constructs. Our data provide a cohesive molecular-based approach for in situ longitudinal evaluation of construct development during growth in vitro. The establishment of these approaches is a valuable step toward the real-time identification and selection of constructs with optimal properties, which may lead to successful tissue integration upon in vivo implantation.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/cytology , Collagen/chemistry , Extracellular Matrix/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Spectroscopy, Near-Infrared , Swine
12.
J Biophotonics ; 13(4): e201960172, 2020 04.
Article in English | MEDLINE | ID: mdl-31957205

ABSTRACT

Approaches for noninvasive bone quality assessment are of great clinical need, particularly in individuals that require close monitoring of disease progression. X-ray measurements are standard approaches to assess bone quality; however, they have several disadvantages. Here, a nonionizing approach for noninvasive assessment of the second metacarpal bone based on near infrared (NIR) spectroscopy was investigated. Transcutaneous bone signal detection was experimentally confirmed with cadaveric hand data, and Monte Carlo modeling further indicated that 50% of the measured signals arise from bone. Spectral data were collected via a NIR fiber optic from the bone of individuals with osteogenesis imperfecta, a disease marked by frequent bone fractures and fragility. Multiple significant correlations were found between spectral parameters related to water, protein and fat, and standard bone quality parameters obtained by X-ray measurements. The results from this preliminary study highlight the potential application of NIR spectroscopy for the noninvasive assessment of bone quality.


Subject(s)
Fiber Optic Technology , Spectroscopy, Near-Infrared , Bone and Bones/diagnostic imaging , Humans , Proteins , Water
13.
Analyst ; 145(3): 764-776, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31755889

ABSTRACT

Bone mineral development has been described to proceed through an amorphous precursor prior to apatite crystallization. However, further analytical approaches are necessary to identify specific markers of amorphous mineral components in bone. Here, we establish an original Fourier transform infrared (FTIR) spectroscopy approach to allow the specific identification of the amorphous and/or crystalline nature of bone mineral. Using a series of standards, our results demonstrate that obtaining the second derivative of the FTIR spectra could reveal a peak specifically corresponding to amorphous calcium phosphate (ACP) at ∼992 cm-1. The intensity of this peak was strongly correlated to ACP content in standard mixtures. The analysis of a variety of bones showed that a clear ACP peak could be identified as a specific marker of the existence of an amorphous mineral component in developing bones. In contrast, the ACP peak was not detected in the mature bones. Moreover, subjecting developing bones to ex vivo crystallization conditions led to a clear reduction of the ACP peak, further substantiating the conversion of amorphous mineral precursor into mature apatite crystals. Analysis of mineralization in osteogenic cell cultures corroborated our observations, showing the presence of ACP as a major transient component in early mineralization, but not in the mature matrix. Additionally, FTIR imaging revealed that ACP was present in areas of matrix development, distributed around the edges of mineralizing nodules. Using an original analytical approach, this work provides strong evidence to support that bone mineral development is initiated by an amorphous precursor prior to apatite crystallization.


Subject(s)
Bone and Bones/chemistry , Calcium Phosphates/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Animals , Bone and Bones/metabolism , Cell Line , Mice , Mice, Inbred C57BL , Osteoblasts/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism , Rats , Rats, Sprague-Dawley , Zebrafish
14.
Ann N Y Acad Sci ; 1442(1): 104-117, 2019 04.
Article in English | MEDLINE | ID: mdl-30058180

ABSTRACT

Tissue engineering (TE) approaches are being widely investigated for repair of focal defects in articular cartilage. However, the amount and/or type of extracellular matrix (ECM) produced in engineered constructs does not always correlate with the resultant mechanical properties. This could be related to the specifics of ECM distribution throughout the construct. Here, we present data on the amount and distribution of the primary components of native and engineered cartilage (i.e., collagen, proteoglycan (PG), and water) using Fourier transform infrared imaging spectroscopy (FT-IRIS). These data permit visualization of matrix and water at 25 µm resolution throughout the tissues, and subsequent colocalization of these components using image processing methods. Native and engineered cartilage were cryosectioned at 80 µm for evaluation by FT-IRIS in the mid-infrared (MIR) and near-infrared (NIR) regions. PG distribution correlated strongly with water in native and engineered cartilage, supporting the binding of water to PG in both tissues. In addition, NIR-derived matrix peaks correlated significantly with MIR-derived collagen peaks, confirming the interpretation that these absorbances arise primarily from collagen and not PG. The combined use of MIR and NIR permits assessment of ECM and water spatial distribution at the micron level, which may aid in improved development of TE techniques.


Subject(s)
Cartilage, Articular/ultrastructure , Tissue Engineering/methods , Animals , Cartilage, Articular/metabolism , Cattle , Extracellular Matrix/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
15.
Exp Cell Res ; 372(1): 25-34, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30193837

ABSTRACT

Osteoblasts are adherent cells, and under physiological conditions they attach to both mineralized and non-mineralized osseous surfaces. However, how exactly osteoblasts respond to these different osseous surfaces is largely unknown. Our hypothesis was that the state of matrix mineralization provides a functional signal to osteoblasts. To assess the osteoblast response to mineralized compared to demineralized osseous surfaces, we developed and validated a novel tissue surface model. We demonstrated that with the exception of the absence of mineral, the mineralized and demineralized surfaces were similar in molecular composition as determined, for example, by collagen content and maturity. Subsequently, we used the human osteoblastic cell line MG63 in combination with genome-wide gene set enrichment analysis (GSEA) to record and compare the gene expression signatures on mineralized and demineralized surfaces. Assessment of the 5 most significant gene sets showed on mineralized surfaces an enrichment exclusively of genes sets linked to protein synthesis, while on the demineralized surfaces 3 of the 5 enriched gene sets were associated with the matrix. Focusing on these three gene sets, we observed not only the expected structural components of the bone matrix, but also gene products, such as HMCN1 or NID2, that are likely to act as temporal migration guides. Together, these findings suggest that in osteoblasts mineralized and demineralized osseous surfaces favor intracellular protein production and matrix formation, respectively. Further, they demonstrate that the mineralization state of bone independently controls gene expression in osteoblastic cells.


Subject(s)
Bone Morphogenetic Proteins/genetics , Calcification, Physiologic/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix/genetics , Osteoblasts/metabolism , Tibia/metabolism , Animals , Bone Density , Bone Morphogenetic Proteins/metabolism , Calcium-Binding Proteins , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunoglobulins/genetics , Immunoglobulins/metabolism , Osteoblasts/cytology , Primary Cell Culture , Protein Biosynthesis , Signal Transduction , Swine , Tibia/cytology
16.
Appl Spectrosc ; 72(11): 1581-1593, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29972319

ABSTRACT

Bone mineral crystallinity is an important factor determining bone quality and strength. The gold standard method to quantify crystallinity is X-ray diffraction (XRD), but vibrational spectroscopic methods present powerful alternatives to evaluate a greater variety of sample types. We describe original approaches by which transmission Fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and Raman spectroscopy can be confidently used to quantify bone mineral crystallinity. We analyzed a range of biological and synthetic apatite nanocrystals (10-25 nm) and found strong correlations between different spectral factors and the XRD determination of crystallinity. We highlight striking differences between FT-IR spectra obtained by transmission and ATR. In particular, we show for the first time the absence of the 1030 cm-1 crystalline apatite peak in ATR FT-IR spectra, which excludes its use for analyzing crystallinity using the traditional 1030/1020 cm-1 ratio. The ν4PO4 splitting ratio was also not adequate to evaluate crystallinity using ATR FT-IR. However, we established original approaches by which ATR FT-IR can be used to determine apatite crystallinity, such as the 1095/1115 and 960/1115 cm-1 peak ratios in the second derivative spectra. Moreover, we found a simple unified approach that can be applied for all three vibrational spectroscopy modalities: evaluation of the ν1PO4 peak position. Our results allow the recommendation of the most reliable analytical methods to estimate bone mineral crystallinity by vibrational spectroscopy, which can be readily implemented in many biomineralization, archeological and orthopedic studies. In particular, we present a step forward in advancing the use of the increasingly utilized ATR FT-IR modality for mineral research.

17.
Sci Rep ; 8(1): 7022, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29728612

ABSTRACT

We have reported that recombinant biglycan (BGN) core protein accelerates bone formation in vivo by enhancing bone morphogenetic protein (BMP)-2 function. The purpose of the present study was to identify the specific domain ("effector") within the BGN core protein that facilitates BMP-2 osteogenic function. Thus, we generated various recombinant and synthetic peptides corresponding to several domains of BGN, and tested their effects on BMP-2 functions in vitro. The results demonstrated that the leucine-rich repeats 2-3 domain (LRR2-3) of BGN significantly enhanced the BMP-2 induced Smad1/5/9 phosphorylation, osteogenic gene expression, and alkaline phosphatase activity in myogenic C2C12 cells. Furthermore, addition of LRR2-3 to osteoblastic MC3T3-E1 cells accelerated in vitro mineralization without compromising the quality of the mineral and matrix. These data indicate that LRR2-3 is, at least in part, responsible for BGN's ability to enhance BMP-2 osteogenic function, and it could be useful for bone tissue regeneration.


Subject(s)
Biglycan/metabolism , Bone Morphogenetic Protein 2/metabolism , Osteogenesis , Protein Interaction Domains and Motifs , Animals , Biglycan/chemistry , Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/genetics , Calcification, Physiologic , Cell Line , Cells, Cultured , Mice , Models, Molecular , Osteogenesis/genetics , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Conformation , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
18.
Analyst ; 142(21): 4005-4017, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-28956032

ABSTRACT

Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.


Subject(s)
Fiber Optic Technology , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Tissue Engineering , Bone and Bones , Cartilage , Humans , Vibration
19.
Cancer Cell Int ; 16: 46, 2016.
Article in English | MEDLINE | ID: mdl-27330409

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor presenting self-renewing cancer stem cells. The role of these cells on the development of the tumors has been proposed to recapitulate programs from embryogenesis. Recently, the embryonic transforming growth factor-ß (TGF-ß) protein Nodal has been shown to be reactivated upon tumor development; however, its availability in GBM cells has not been addressed so far. In this study, we investigated by an original approach the mechanisms that dynamically control both intra and extracellular Nodal availability during GBM tumorigenesis. METHODS: We characterized the dynamics of Nodal availability in both stem and more differentiated GBM cells through morphological analysis, immunofluorescence of Nodal protein and of early (EEA1 and Rab5) and late (Rab7 and Rab11) endocytic markers and Western Blot. Tukey's test was used to analyze the prevalent correlation of Nodal with different endocytic markers inside specific differentiation states, and Sidak's multiple comparisons test was used to compare the prevalence of Nodal/endocytic markers co-localization between two differentiation states of GBM cells. Paired t test was used to analyze the abundance of Nodal protein, in extra and intracellular media. RESULTS: The cytoplasmic distribution of Nodal was dynamically regulated and strongly correlated with the differentiation status of GBM cells. While Nodal-positive vesicle-like particles were symmetrically distributed in GBM stem cells (GBMsc), they presented asymmetric perinuclear localization in more differentiated GBM cells (mdGBM). Strikingly, when subjected to dedifferentiation, the distribution of Nodal in mdGBM shifted to a symmetric pattern. Moreover, the availability of both intracellular and secreted Nodal were downregulated upon GBMsc differentiation, with cells becoming elongated, negative for Nodal and positive for Nestin. Interestingly, the co-localization of Nodal with endosomal vesicles also depended on the differentiation status of the cells, with Nodal seen more packed in EEA1/Rab5 + vesicles in GBMsc and more in Rab7/11 + vesicles in mdGBM. CONCLUSIONS: Our results show for the first time that Nodal availability relates to GBM cell differentiation status and that it is dynamically regulated by an endocytic pathway during GBM tumorigenesis, shedding new light on molecular pathways that might emerge as putative targets for Nodal signaling in GBM therapy.

20.
Micron ; 80: 122-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26546967

ABSTRACT

The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate.


Subject(s)
Bone and Bones/chemistry , Bone and Bones/metabolism , Minerals/analysis , Strontium/metabolism , Animals , Female , Humans , Male , Microscopy/methods , Osteoporosis/drug therapy , Spectrum Analysis/methods , Strontium/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...